Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 238: 118160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34058331

RESUMO

Neural responses to the same stimulus show significant variability over trials, with this variability typically reduced (quenched) after a stimulus is presented. This trial-to-trial variability (TTV) has been much studied, however how this neural variability quenching is influenced by the ongoing dynamics of the prestimulus period is unknown. Utilizing a human intracranial stereo-electroencephalography (sEEG) data set, we investigate how prestimulus dynamics, as operationalized by standard deviation (SD), shapes poststimulus activity through trial-to-trial variability (TTV). We first observed greater poststimulus variability quenching in those real trials exhibiting high prestimulus variability as observed in all frequency bands. Next, we found that the relative effect of the stimulus was higher in the later (300-600ms) than the earlier (0-300ms) poststimulus period. Lastly, we replicate our findings in a separate EEG dataset and extend them by finding that trials with high prestimulus variability in the theta and alpha bands had faster reaction times. Together, our results demonstrate that stimulus-related activity, including its variability, is a blend of two factors: 1) the effects of the external stimulus itself, and 2) the effects of the ongoing dynamics spilling over from the prestimulus period - the state at stimulus onset - with the second dwarfing the influence of the first.


Assuntos
Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico , Eletroencefalografia , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Adulto Jovem
2.
Brain Res ; 1658: 25-30, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28063856

RESUMO

Iron overload has been regarded as a common cause for refractory epilepsies in patients after hemorrhagic strokes. This study is to examine the potential epilepsy control effect of deferoxamine (DFO), an iron chelator, on a ferric chloride-induced epilepsy rat model. Twenty four rats were divided into 4 groups: group I is blank control group, group II is sham group with intracortical injection of saline, group III is epilepsy group with intracortical injection of iron and saline treatment, group IV is treatment group with intracortical injection of iron and DFO treatment. For the DFO intervention group, a daily dose of 100mg/kg DFO via peritoneal injection was applied for 14days. Outcomes were evaluated by behavioral study, electroencephalography (EEG), magnetic resonance imaging (MRI) scan and tissue analysis. Epilepsies according to behavioral observations and EEG analysis were significantly suppressed after intervention of DFO. Reduction of iron content in the brain cortex was proved by diminished low signal area on T2-MRI images (p=0.006) and tissue analysis (p<0.001), simultaneously the superoxide dismutase (SOD) activity increased (p<0.001). Western blot analysis demonstrated the decreasing of local transferrin after DFO treatment. DFO is efficient at Fe clearance, thus helpful in epilepsy control. This finding implies potential therapeutic value of DFO in patients with refractory epilepsy after hemorrhagic stroke.


Assuntos
Anticonvulsivantes/farmacologia , Desferroxamina/farmacologia , Epilepsia/tratamento farmacológico , Sideróforos/farmacologia , Animais , Western Blotting , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiopatologia , Cloretos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Eletroencefalografia , Epilepsia/diagnóstico por imagem , Epilepsia/patologia , Epilepsia/fisiopatologia , Compostos Férricos , Ferritinas/metabolismo , Ferro/metabolismo , Imageamento por Ressonância Magnética , Masculino , Distribuição Aleatória , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA