Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 24(9): 4180-4189, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37606546

RESUMO

Chitin nanocrystals (ChNCs) are unique to all other bio-derived nanomaterials in one aspect: the inherent presence of a nitrogen moiety. By tuning the chemical functionality of this nanomaterial, and thus its charge and hydrogen bonding capacity, one can heavily impact its macroscopic properties such as its rheological and self-assembly characteristics. In this study, two types of ChNCs are made using acid hydrolysis (AH-ChNCs) and oxidative (OX-ChNCs) pathways, unto which deacetylation using a solvent-free procedure is utilized to create chitosan nanocrystals (ChsNCs) of varying degree of deacetylation (DDA). These nanocrystals were then studied for their rheological behavior and liquid crystalline ordering. It was found that with both deacetylation and carboxylation of ChNCs, viscosity continually increased with increasing concentrations from 2 to 8 wt %, contrary to AH-ChNC dispersions in the same range. Interestingly, increasing the amine content of ChNCs was not proportional to the storage modulus, where a peak saturation of amines provided the most stiffness. Conversely, while the introduction of carboxylation increased the elastic modulus of OX-ChNCs by an order of magnitude from that of AH-ChNCs, it was decreased by increasing DDA. Deacetylation and carboxylation both inhibited the formation of a chiral nematic phase. Finally, these series of nanocrystals were incorporated into biodegradable pectin-alginate films as a physical reinforcement, which showed increased tensile strength and Young's modulus values for the films incorporated with ChsNCs. Overall, this study is the first to investigate how surface functionalization of chitin-derived nanocrystals can affect their rheological and liquid crystalline properties and how it augments pectin/alginate films as a physical reinforcement nanofiller.


Assuntos
Quitosana , Nanopartículas , Quitina , Biopolímeros , Pectinas , Alginatos , Aminas
2.
ACS Appl Mater Interfaces ; 11(13): 12357-12366, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30859807

RESUMO

Efficient intracellular delivery of exogenous macromolecules is a key operation in biological research and for clinical applications. Moreover, under particular in vitro or ex vivo conditions, harvesting the engineered cells that maintain good viability is also important. However, none of the methods currently available is truly satisfactory in all respects. Herein, a "two-in-one" platform based on a polydopamine/poly( N-isopropylacrylamide) (PDA/PNIPAAm) hybrid film is developed, showing high efficiency in both cargo delivery and cell harvest without compromising cell viability. Due to the strong photothermal effect of PDA in response to near-infrared irradiation, this film can deliver diverse molecules to a number of cell types (including three hard-to-transfect cells) with an efficiency of ∼99% via membrane-disruption mechanism. Moreover, due to the thermoresponsive properties of PNIPAAm, the cells are harvested from the film without compromising viability by simply decreasing the temperature. A proof-of-concept experiment demonstrates that, using this platform, "recalcitrant" endothelial cells can be transfected by the functional ZNF580 gene and the harvested transfected cells can be recultured with high retention of viability and improved migration. In general, this "two-in-one" platform provides a reliable, universally applicable approach for both intracellular delivery and cell harvest in a highly efficient and nondestructive way, with great potential for use in a wide range of biomedical applications.


Assuntos
Resinas Acrílicas , Sistemas de Liberação de Medicamentos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Hipertermia Induzida , Indóis , Fototerapia , Polímeros , Transfecção , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/farmacologia , Células HeLa , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Indóis/química , Indóis/farmacocinética , Indóis/farmacologia , Polímeros/química , Polímeros/farmacocinética , Polímeros/farmacologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA