Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 236: 113809, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447446

RESUMO

The aim of the study was to develop an oral targeting drug delivery system (OTDDS) of oxymatrine (OMT) to effectively treat ulcerative colitis (UC). The OTDDS of OMT (OMT/SA-NPs) was constructed with OMT, pectin, Ca2+, chitosan (CS) and sialic acid (SA). The obtained particles were characterized in terms of particle size, zeta potential, morphology, drug loading, encapsulation efficiency, drug release and stability. The average size of OMT/SA-NPs was 255.0 nm with a zeta potential of -12.4 mV. The loading content and encapsulation efficiency of OMT/SA-NPs were 14.65% and 84.83%, respectively. The particle size of OMT/SA-NPs changed slightly in the gastrointestinal tract. The nanoparticles can delivery most of the drug to the colon region. In vitro cell experiments showed that the SA-NPs had excellent biocompatibility and anti-inflammation, and the uptake of SA-NPs by RAW 264.7 cells was time and concentration-dependent. The conjugated SA can help the internalization of NPs into target cells. In vivo experiments showed that OMT/SA-NPs had a superior anti-inflammation effect and the effect of reducing UC, which was attributed to the delivery most of OMT to the colonic lumen, the specific targeting and retention in colitis site and the combined anti-inflammation of OMT and NPs.


Assuntos
Colite Ulcerativa , Matrinas , Nanopartículas , Humanos , Colite Ulcerativa/tratamento farmacológico , Ácido N-Acetilneuramínico , Pectinas , Sistemas de Liberação de Medicamentos , Anti-Inflamatórios/farmacologia
2.
Mater Sci Eng C Mater Biol Appl ; 105: 110103, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31546357

RESUMO

Synergistic therapy of chemotherapy and photothermal therapy exhibits great potential to improve the therapeutic efficiency for cancer therapy. In this study, a new biocompatible multiple sensitive drug delivery system (DDS) was synthesized by covering a polydopamine (PDA) layer on doxorubicin (DOX)-loaded mesoporous silica nanoparticle (MSN) via disulfide bonds (MSN-SS-PDA/DOX). PDA worked as a photothermal therapy (PTT) agent and also a gate keeper to control drug release, which was highly sensitive to pH and could prolong the residence time, simultaneously increase water solubility and biocompatibility of the nanoparticles. The DDS exhibited excellent monodispersity, redox/pH/NIR-multi-dependent release characteristics, remarkable photothermal conversion property (photothermal conversion efficiency η = 40.21%) and outstanding tumor cell synergistic killing efficiency of chemotherapy and photothermal therapy (combination index CI = 0.175). The biodistribution and pharmacodynamics experiments of MSN-SS-PDA/DOX in 4T1 tumor models indicated that MSN-SS-PDA made more DOX accumulate in tumor tissue than free DOX, extend circulation time of DOX in the body, and exhibit a significant synergistic antitumor efficacy. Meanwhile, the tumor growth was remarkably inhibited, which was much more obvious than any monotherapy effect. Thus, the novel nanoplatform presents a promising future as a drug delivery system for combination therapy.


Assuntos
Materiais Revestidos Biocompatíveis , Doxorrubicina , Sistemas de Liberação de Medicamentos , Hipertermia Induzida , Indóis , Nanopartículas , Neoplasias/terapia , Fototerapia , Polímeros , Dióxido de Silício , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Feminino , Humanos , Indóis/química , Indóis/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Polímeros/química , Polímeros/farmacologia , Ratos , Ratos Sprague-Dawley , Dióxido de Silício/química , Dióxido de Silício/farmacologia
3.
J Colloid Interface Sci ; 494: 159-169, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28157634

RESUMO

In this study, hollow mesoporous carbon nanoparticles (HMCN) and mesoporous carbon nanoparticles (MCN) were used as near-infrared region (NIR) nanomaterials and drug nanocarriers were prepared using different methods. A comparison between HMCN and MCN was performed with regard to the NIR-induced photothermal effect and drug loading efficiency. The results of NIR-induced photothermal effect test demonstrated that HMCN-COOH had a better photothermal conversion efficacy than MCN-COOH. Given the prominent photothermal effect of HMCN-COOH in vitro, the chemotherapeutic drug DOX was chosen as a model drug to further evaluate the drug loading efficiencies and NIR-triggered drug release behaviors of the nanocarriers. The drug loading efficiency of DOX/HMCN-COOH was found to be up to 76.9%, which was higher than that of DOX/MCN-COOH. In addition, the use of an 808nm NIR laser markedly increased the release of DOX from both carbon carriers in pH 5.0 PBS and pH 7.4 PBS. Cellular photothermal tests involving A549 cells demonstrated that HMCN-COOH had a much higher photothermal efficacy than MCN-COOH. Cell viability experiments and flow cytometry were performed to evaluate the therapeutic effect of DOX/HMCN-COOH and the results obtained demonstrated that DOX/HMCN-COOH had a synergistic therapeutic effect in cancer treatment involving a combination of chemotherapy and photothermal therapy.


Assuntos
Carbono/química , Portadores de Fármacos/química , Hipertermia Induzida/métodos , Raios Infravermelhos , Nanopartículas/química , Fototerapia/métodos , Carbono/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Portadores de Fármacos/administração & dosagem , Humanos , Concentração de Íons de Hidrogênio , Hipertermia Induzida/instrumentação , Nanopartículas/administração & dosagem , Fototerapia/instrumentação
4.
Mater Sci Eng C Mater Biol Appl ; 71: 594-603, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27987749

RESUMO

In this work, we described the development of the redox and pH dual stimuli-responsive drug delivery system and combination of the chemotherapy and photothermal therapy for cancer treatment. The poly(acrylic acid) (PAA) was conjugated on the outlets of hollow mesoporous carbon (HMC) via disulfide bonds. PAA was used as a capping to block drug within the mesopores of HMC for its lots of favorable advantages, such as good biocompatibility, appropriate molecular weight to block the mesopores of HMC, extension of the blood circulation, and the improvement of the dispersity of the nano-carriers in physiological environment. The DOX loaded DOX/HMC-SS-PAA had a high drug loading amount up to 51.9%. The in vitro drug release results illustrated that DOX/HMC-SS-PAA showed redox and pH dual-responsive drug release, and the release rate could be further improved by the near infrared (NIR) irradiation. Cell viability experiment indicated that DOX/HMC-SS-PAA had a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This work suggested that HMC-SS-PAA exhibited dual-responsive drug release property and could be used as a NIR-adsorbing drug delivery system for chemo-photothermal synergistic therapy.


Assuntos
Resinas Acrílicas , Doxorrubicina , Sistemas de Liberação de Medicamentos/métodos , Hipertermia Induzida/métodos , Neoplasias/terapia , Fototerapia/métodos , Células A549 , Resinas Acrílicas/química , Resinas Acrílicas/farmacocinética , Resinas Acrílicas/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Porosidade
5.
Eur J Pharm Sci ; 99: 66-74, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916695

RESUMO

In this study, we synthesized a kind of hollow mesoporous carbon (HMC) as near-infrared (NIR) nanomaterial and made a comparison between HMC and IR-820 commercially available in terms of heat generation properties and thermal stability exposed under NIR laser irradiation. The NIR-induced photothermal tests indicated that HMC had excellent heat generating capacity and remained stable after exposed to NIR laser irradiation for several times. On the contrary, the IR-820 was thermal unstable and degraded completely after exposed to NIR laser irradiation for only one time. The anticancer drug DOX was chosen as a model drug to evaluate the loading capacity and release properties of carboxylated HMC (HMC-COOH). The drug loading efficiency of HMC-COOH could reach to 39.7%. In vitro release results indicated that the release rate of DOX was markedly increased under NIR laser irradiation both in pH5.0 and pH7.4 PBS. Cell viability experiments indicated that HMC-COOH/DOX has a synergistic therapeutic effect by combination of chemotherapy and photothermal therapy. This present research demonstrated that HMC could be employed as NIR-adsorbing agents as well as drug carriers to load lots of drug, realizing the synergistic treatment of chemotherapy and photothermal therapy.


Assuntos
Carbono/química , Portadores de Fármacos/química , Verde de Indocianina/análogos & derivados , Células A549 , Antineoplásicos/química , Linhagem Celular Tumoral , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Verde de Indocianina/química , Nanopartículas/química , Nanoestruturas/química , Fototerapia/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA