Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 352: 119910, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38190782

RESUMO

The recycling and utilization of phosphorus resources in sludge is becoming increasingly important. In this study, we compared the conversion of phosphorus and toxic metal passivation effects of different Ca additives under oxygen-rich combustion conditions and elucidated their specific mechanisms of action. The experimental results indicated that four Ca-based additives improved the recovery rate of total phosphorus, and promoted the generation of stable apatite phosphorus (AP). The effect of CaCl2 and CaO was greater than that of Ca(OH)2 and CaSO4. CaCl2 promoted the formation of Ca3(PO4)2 and Ca2P2O7, and CaSO4 improved the conversion of AlPO4 to Ca(H2PO4)2 with increasing temperature. The conversion capacity of CaO on non-apatite inorganic phosphorus to AP was greater than that of Ca(OH)2, and more CaH2P2O7, Ca(PO3)2, and Ca-Al-P minerals were found. Toxic metal percentages decreased after sludge incineration with CaCl2. Compared with CaO and Ca(OH)2, the toxic metal adsorption effect of CaSO4 was more significant. The influence of Ca additives on the conversion of Zn into stable components was as follows: CaCl2 > Ca(OH)2 > CaO > CaSO4. Ca additives reduced the toxic metal contamination level and ecological risk index values, and the order of toxic metal contamination levels was Ni > Zn > Cr > Cu > Mn. The experiment confirmed the conversion of phosphorus and the toxic metal passivation effect of Ca additives during oxy-fuel combustion of sludge, which is beneficial for its resource utilization.


Assuntos
Metais Pesados , Fósforo , Esgotos , Cloreto de Cálcio , Minerais , Incineração
2.
J Environ Manage ; 317: 115337, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35642812

RESUMO

Microalgae-based nutrients recovery from liquid anaerobic digestate of swine manure has been a hotspot in recent decades. Nevertheless, in consideration of the high NH4+-N content and poor light penetrability exhibited by the original liquid digestate, uneconomical pretreatment on liquid digestate including centrifugation and dilution are indispensable before microalgae cells inoculation. Herein, aiming at eliminating the energy-intensive and freshwater-consuming pretreatment on liquid digestate and enhancing microalgae growth, the dialysis bag which permits nutrients transferring across its wall surface whereas retains almost all matters characterized by impeding light transmission within the raw liquid digestate was integrated into a column photobioreactor (DB-PBR). Consequently, light availability of microalgae cells in DB-PBR was elevated remarkably and thus contributed to a 357.58% improvement on microalgae biomass concentration in DB-PBR than the conventional PBR under 80 µmol m-2 s-1. Likewise, superior nutrients removal efficiencies from liquid digestate were obtained in DB-PBR (NH4+-N: 74.84%, TP: 63.75%) over the conventional PBR (NH4+-N: 30.27%, TP: 16.86%). Furthermore, higher microalgae biomass concentration (1.87 g L-1) and nutrients removal efficiencies (NH4+-N: 95.12%, TP: 76.87%) were achieved in the DB-PBR by increasing the light intensity to 140 µmol m-2 s-1. More importantly, the DB-PBR may provide a simple and greener solution to purify other kinds of wastewater.


Assuntos
Microalgas , Purificação da Água , Animais , Biomassa , Nutrientes , Fotobiorreatores , Diálise Renal , Suínos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA