Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fish Dis ; 45(11): 1599-1607, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35801398

RESUMO

Nocardiosis caused by Nocardia seriolae is a major threat to the aquaculture industry. Given that prolonged therapy administration can lead to a growth of antibiotic resistant strains, new antibacterial agents and alternative strategies are urgently needed. In this study, 80 medicinal plants were selected for antibacterial screening to obtain potent bioactive compounds against N. seriolae infection. The methanolic extracts of Magnolia officinalis exhibited the strongest antibacterial activity against N. seriolae with the minimal inhibitory concentration (MIC) of 12.5 µg/ml. Honokiol and magnolol as the main bioactive components of M. officinalis showed higher activity with the MIC value of 3.12 and 6.25 µg/ml, respectively. Sequentially, the evaluation of antibacterial activity of honokiol in vivo showed that honokiol had good biosafety, and could significantly reduce the bacterial load of nocardia-infected largemouth bass (p < .001). Furthermore, the survival rate of nocardia-infected fish fed with 100 mg/kg honokiol was obviously improved (p < .05). Collectively, these results suggest that medicinal plants represent a promising reservoir for discovering active components against Nocardia, and honokiol has great potential to be developed as therapeutic agents to control nocardiosis in aquaculture.


Assuntos
Bass , Doenças dos Peixes , Magnolia , Nocardiose , Nocardia , Plantas Medicinais , Compostos Alílicos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos de Bifenilo , Doenças dos Peixes/tratamento farmacológico , Nocardiose/tratamento farmacológico , Nocardiose/veterinária , Fenóis , Extratos Vegetais/farmacologia
2.
Anal Chem ; 90(4): 2749-2755, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29359937

RESUMO

Herein we report the strategy of liposome-mediated Cu2+-induced exciton trapping upon CdS quantum dots (QDs) for amplified photoelectrochemical (PEC) bioanalysis application. Specifically, the Cu nanoclusters (NCs)-encapsulated liposomes were first fabricated and then processed with antibodies bound to their external surfaces. After the sandwich immunocomplexing, the confined liposomal labels were subjected to sequential lysis treatments for the release of Cu NCs and numerous Cu2+ ions, which were then directed to interact with the CdS QDs electrode. The interaction of Cu2+ ions with CdS QDs could generate CuxS and form the trapping sites to block the photocurrent generation. Since the photocurrent inhibition is closely related with the Cu NCs-loaded liposomal labels, a novel and general "signal-off" PEC immunoassay could thus be tailored with high sensitivity. Meanwhile, a complementary "signal-on" fluorescent detection could be accomplished by measuring the fluorescence intensity originated from the Cu NCs. This work features the first use of Cu NCs in PEC bioanalysis and also the first NCs-loaded liposomal PEC bioanalysis. More importantly, by using other specific ions/reagents-semiconductors interactions, this protocol could serve as a common basis for the general development of a new class of liposome-mediated PEC bioanalysis.


Assuntos
Técnicas Biossensoriais , Cobre/química , Técnicas Eletroquímicas , Imunoensaio , Lipossomos/química , Nanopartículas Metálicas/química , Compostos de Cádmio/química , Eletrodos , Tamanho da Partícula , Processos Fotoquímicos , Pontos Quânticos/química , Sulfetos/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA