Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Revista
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PeerJ ; 11: e15931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663301

RESUMO

Air quality has emerged as a critical concern in recent years, with the concentration of PM2.5 recognized as a vital index for assessing it. The accuracy of predicting PM2.5 concentrations holds significant value for effective air quality monitoring and management. In response to this, a combined model comprising CEEMDAN-RLMD-BiLSTM-LEC has been introduced, analyzed, and compared against various other models. The combined decomposition method effectively underlines the fundamental characteristics of the data compared to individual decomposition techniques. Additionally, local error correction (LEC) efficiently addresses the issue of prediction errors induced by excessive disturbances. The empirical results of nine steps indicate that the combined CEEMDAN-RLMD-BiLSTM-LEC model outperforms single prediction models such as RLMD and CEEMDAN, reducing MAE, RMSE, and SAMPE by 36.16%, 28.63%, 45.27% and 16.31%, 6.15%, 37.76%, respectively. Moreover, the inclusion of LEC in the model further diminishes MAE, RMSE, and SMAPE by 20.69%, 7.15%, and 44.65%, respectively, exhibiting commendable performance in generalization experiments. These findings demonstrate that the combined CEEMDAN-RLMD-BiLSTM-LEC model offers high predictive accuracy and robustness, effectively handling noisy data predictions and severe local variations. With its wide applicability, this model emerges as a potent tool for addressing various related challenges in the field.


Assuntos
Generalização Psicológica , Osteopatia , Material Particulado/efeitos adversos
2.
PeerJ ; 11: e15851, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637158

RESUMO

Ali Network data based on the Qinghai-Tibetan Plateau (QTP) can provide representative coverage of the climate and surface hydrometeorological conditions in the cold and arid region of the QTP. Among them, the plateau soil moisture can effectively quantify the uncertainty of coarse resolution satellite and soil moisture models. With the objective of constructing an "end-to-end" soil moisture prediction model for the Tibetan Plateau, a combined prediction model based on time series decomposition and a deep neural network is proposed in this article. The model first performs data preprocessing and seasonal-trend decomposition using loess (STL) to obtain the trend component, seasonal component and random residual component of the original time series in an additive way. Subsequently, the bidirectional gated recurrent unit (BiGRU) is used for the trend component, and the long short-term memory (LSTM) is used for the seasonal and residual components to extract the time series information. The experiments based on the measured data demonstrate that the use of STL decomposition and the combination model can effectively extract the information in soil moisture series using its concise and clear structure. The proposed model in this article has a stable performance improvement of 5-30% over a single model and existing prediction models in different prediction time domains. In long-range prediction, the proposed model also achieves the best accuracy in the shape and temporal domains described by using dynamic time warping (DTW) index and temporal distortion index (TDI). In addition, the generalization performance experiments show that the combined method proposed in this article has strong reference value for time series prediction of natural complex systems.


Assuntos
Clima , Osteopatia , Tibet , Generalização Psicológica , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA