Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 552
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 329: 118158, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38614263

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Trichosanthis pericarpium (TP; Gualoupi, pericarps of Trichosanthes kirilowii Maxim) has been used in traditional Chinese medicine (TCM) to reduce heat, resolve phlegm, promote Qi, and clear chest congestion. It is also an essential herbal ingredient in the "Gualou Xiebai" formula first recorded by Zhang Zhongjing (from the Eastern Han Dynasty) in the famous TCM classic "Jin-Guì-Yào-Lüe" for treating chest impediments. According to its traditional description, Gualou Xiebai is indicated for symptoms of chest impediments, which correspond to coronary heart diseases (CHD). AIM OF THE STUDY: This study aimed to identify the antithrombotic compounds in Gualoupi for the treatment of CHD. MATERIALS AND METHODS: A CHD rat model was established with a combination of high-fat diet and isoproterenol hydrochloride (ISO) administration via subcutaneous multi-point injection in the back of the neck. This model was used to evaluate the antithrombotic effect of two mainstream cultivars of TP ("HaiShi GuaLou" and "WanLou") by analyzing the main components and their effects. Network pharmacology, molecular docking-based studies, and a zebrafish (Danio rerio) thrombosis model induced by phenylhydrazine was used to validate the antithrombosis components of TP. RESULTS: TP significantly reduced the body weight of the CHD rats, improved myocardial ischemia, and reduced collagen deposition and fibrosis around the infarcted tissue. It reduced thrombosis in a dose-dependent manner and significantly reduced inflammation and oxidative stress damage. Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as candidate active TP compounds with antithrombotic effects. The key potential targets of TP in thrombosis treatment were initially identified by molecular docking-based analysis, which showed that the candidate active compounds have a strong binding affinity to the potential targets (protein kinase C alpha type [PKCα], protein kinase C beta type [PKCß], von Willebrand factor [vWF], and prostaglandin-endoperoxide synthase 1 [PTGS1], fibrinogen alpha [Fga], fibrinogen beta [Fgb], fibrinogen gamma [Fgg], coagulation factor II [F2], and coagulation factor VII [F7]). In addition, the candidate active compounds reduced thrombosis, improved oxidative stress damage, and down-regulated the expression of thrombosis-related genes (PKCα, PKCß, vWF, PTGS1, Fga, Fgb, Fgg, F2, and F7) in the zebrafish model. CONCLUSION: Cynaroside, isoquercitrin, rutin, citrulline, and arginine were identified as the active antithrombotic compounds of TP used to treat CHD. Mechanistically, the active compounds were found to be involved in oxidative stress injury, platelet activation pathway, and complement and coagulation cascade pathways.

2.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1378-1387, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621986

RESUMO

This paper aims to study the pharmacokinetic differences of twelve effective constituents(succinic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, protocatechuic aldehyde, caffeic acid, 5-O-ferulogeninic acid, p-coumaric acid, nuciferine, quercetin, oleanolic acid, and ursolic acid) in Qihe Fenqing Yin in normal and diabetic rats. The diabetic rat model was established by a high-fat diet combined with intraperitoneal injection of streptozocin. A UHPLC-QTRAP-MS/MS method was established for the simultaneous determination of 12 constituents in the plasma of normal rats and model rats after a single intragastric administration of Qihe Fenqing Yin. The results show that the established analytical method has a good linear relationship with the 12 components, and the specificity, accuracy, precision, and stability meet the requirements. The computational pharmacokinetic parameters are fitted by DAS 3.2.8 software, and the results show that the half-life time(t_(1/2)) of the other nine components in the model group was longer than that in the normal group except for caffeic acid, 5-O-ferulogeninic acid, and oleanolic acid. The area under curve(AUC_(0-t)) of cryptochlorogenic acid, p-coumaric acid, ursolic acid, and oleanolic acid increases compared with the normal group. Meanwhile, mean residence time(MRT) delays. The "double peaks" of quercetin and nuciferine in the normal group are not observed in the model group, suggesting that the pharmacokinetic parameters of the drugs in the disease state are significantly different.


Assuntos
Ácidos Cafeicos , Ácidos Cumáricos , Diabetes Mellitus Experimental , Medicamentos de Ervas Chinesas , Ácido Oleanólico , Ratos , Animais , Ratos Sprague-Dawley , Quercetina , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Medicamentos de Ervas Chinesas/farmacocinética
3.
J Ethnopharmacol ; 330: 118191, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38621468

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The Mijiao (MJ) formula, a traditional herbal remedy, incorporates antlers as its primary constituent. It can effectively treat osteoporosis (OP), anti-aging, enhance immune activity, and change depression-like behavior. In this study, we investigated that MJ formula is a comprehensive treatment strategy, and may provide a potential approach for the clinical treatment of postmenopausal osteoporosis. AIM OF THE STUDY: The purpose of this study was to determine whether MJ formula promoted osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and improved osteoporosis in ovariectomized rats by regulating the NAT10-mediated Runx2 mRNA ac4C modification. MATERIALS AND METHODS: Female Sprague-Dawley (SD) rats were used to investigate the potential therapeutic effect of MJ formula on OP by creating an ovariectomized (OVX) rat model. The expression of osteogenic differentiation related proteins in BMSCs was detected in vivo, indicating their role in promoting bone formation. In addition, the potential mechanism of its bone protective effect was explored via in vitro experiments. RESULTS: Our study showed that MJ formula significantly mitigated bone mass loss in the OVX rat model, highlighting its potential as an OP therapeutic agent. We found that the possible mechanism of action was the ability of this formulation to stabilize Runx2 mRNA through NAT10-mediated ac4C acetylation, which promoted osteogenic differentiation of BMSCs and contributed to the enhancement of bone formation. CONCLUSIONS: MJ formula can treat estrogen deficiency OP by stabilizing Runx2 mRNA, promoting osteogenic differentiation and protecting bone mass. Conceivably, MJ formulation could be a safe and promising strategy for the treatment of osteoporosis.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Medicamentos de Ervas Chinesas , Células-Tronco Mesenquimais , Osteogênese , Osteoporose , Ovariectomia , RNA Mensageiro , Ratos Sprague-Dawley , Animais , Feminino , Osteogênese/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , RNA Mensageiro/metabolismo , Osteoporose/tratamento farmacológico , Ratos , Modelos Animais de Doenças , Células Cultivadas
4.
J Ethnopharmacol ; 330: 118193, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38636578

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Saiga antelope horn (SAH) is a traditional Chinese medicine for treating hypertension with liver-yang hyperactivity syndrome (Gan-Yang-Shang-Kang, GYSK), that has a long history of clinical application and precise efficacy, but its mechanism and functional substances are still unknown. Based on the demand for alternative research on the rare and endangered SAH, the group designed and carried out the following studies. AIM OF THE STUDY: The purpose of this research was to demonstrate the functional substances and mechanisms of SAH in the treatment of GYSK hypertension. MATERIALS AND METHODS: The GYSK-SHR model was constructed by administering a decoction of aconite to spontaneously hypertensive rats (SHRs). Blood pressure (BP), behavioural tests related to GYSK, and pathological changes in the kidneys, heart and aorta were measured to investigate the effects of SAH on GYSK-SHRs. Proteomic analysis was used to identify the keratins and peptides of SAH. Moreover, network pharmacology and plasma metabolomics studies were carried out to reveal the mechanisms by which functional peptides in SAH regulate GYSK-hypertension. RESULTS: SAH has a significant antihypertensive effect on GYSK hypertensive animals. It has also been proven to be effective in protecting the function and structural integrity of the kidneys, heart and aorta. Moreover, SAH improved the abnormalities of 31 plasma biomarkers in rats. By constructing a "biomarker-target-peptide" network, 10 functional peptides and two key targets were screened for antihypertensive effects of SAH. The results indicated that SAH may exert a therapeutic effect by re-establishing the imbalance of renin-angiotensin (RAS) system. CONCLUSIONS: Functional peptides from keratin contained in SAH are the main material basis for the treatment of GYSK-hypertension and exhibited the protective effect on the GYSK-SHR model through the RAS system.


Assuntos
Anti-Hipertensivos , Hipertensão , Medicina Tradicional Chinesa , Metabolômica , Farmacologia em Rede , Ratos Endogâmicos SHR , Animais , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Masculino , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Ratos , Medicina Tradicional Chinesa/métodos , Pressão Sanguínea/efeitos dos fármacos , Antílopes , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Cornos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Modelos Animais de Doenças
5.
Phytomedicine ; 128: 155385, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569292

RESUMO

BACKGROUND: Xianlian Jiedu Decoction (XLJDD) has been used for the treatment of colorectal cancer (CRC) for several decades because of the prominent efficacy of the prescription. Despite the clear clinical efficacy of XLJDD, the anti-CRC mechanism of action is still unclear. PURPOSE: The inhibitory effect and mechanism of XLJDD on CRC were investigated in the azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mice. METHODS: The AOM/DSS-induced mice model was adopted to evaluate the efficacy after administering the different doses of XLJDD. The therapeutic effects of XLJDD in treating AOM/DSS-induced CRC were investigated through histopathology, immunofluorescence and ELISA analysis methods. In addition, metabolomics profile and 16S rRNA analysis were used to explore the effective mechanisms of XLJDD on CRC. RESULTS: The results stated that the XLJDD reduced the number of tumor growth on the inner wall of the colon and the colorectal weight/length ratio, and suppressed the disease activity index (DAI) score, meanwhile XLJDD also increased body weight, colorectal length, and overall survival rate. The treatment of XLJDD also exhibited the ability to lower the level of inflammatory cytokines in serum and reduce the expression levels of ß-catenin, COX-2, and iNOS protein in colorectal tissue. The findings suggested that XLJDD has anti-inflammatory properties and may provide relief for those suffering from inflammation-related conditions. Mechanistically, XLJDD improved gut microbiota dysbiosis and associated metabolic levels of short chain fatty acids (SCFAs), sphingolipid, and glycerophospholipid. This was achieved by reducing the abundance of Turicibacter, Clostridium_sensu_stricto_1, and the levels of sphinganine, LPCs, and PCs. Additionally, XLJDD increased the abundance of Enterorhabdus and Alistipes probiotics, as well as the content of butyric acid and isovaleric acid. CONCLUSION: The data presented in this article demonstrated that XLJDD can effectively inhibit the occurrence of colon inner wall tumors by reducing the level of inflammation and alleviating intestinal microbial flora imbalance and metabolic disorders. It provides a scientific basis for clinical prevention and treatment of CRC.


Assuntos
Azoximetano , Neoplasias Colorretais , Sulfato de Dextrana , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Camundongos , Masculino , Modelos Animais de Doenças , Metaboloma/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/patologia , Colo/microbiologia
6.
Am J Chin Med ; 52(2): 513-539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533568

RESUMO

Aging can cause degenerative changes in multiple tissues and organs. Gastrointestinal diseases and dysfunctions are common in the elderly population. In this study, we investigated the effects of Astragalus membranaceus polysaccharide (APS) and Astragalus membranaceus ethanol extract (AEE) on age-related intestinal dysfunction and gut microbiota dysbiosis in naturally aging mice. The energy expenditure and physical activity of 23-month-old C57BL6/J mice were recorded using a metabolic cage system. Pathological changes in the intestine were evaluated using Alcian blue staining. The protein levels of leucine-rich repeats containing G protein-coupled receptor 5 (Lgr5) and Stat3 in the small intestine were determined using immunohistochemistry. The intestinal cell migration distance was assessed using bromodeoxyuridine (BrdU) immunofluorescence staining. The gene transcription levels of intestinal stem cell (ISC) markers and ISC-related signaling pathways were detected using quantitative real-time PCR (qRT-PCR). Microbiota analysis based on 16S rDNA was performed to evaluate the composition of the gut microbiota. APS and AEE improved a series of aging phenotypes in female but not in male aging mice. APS and AEE ameliorate intestinal dysfunction and histopathological changes in aging mice. APS had a more significant anti-aging effect than AEE, particularly on intestinal dysfunction. APS promotes ISC regeneration by activating the IL-22 signaling pathway. Cohousing (CH) experiments further confirmed that APS induced the IL-22 signaling pathway by increasing the abundance of Lactobacillus, thereby promoting the regeneration of ISCs. Our results show that APS may serve as a promising agent for improving age-related intestinal dysfunction.


Assuntos
Astragalus propinquus , Interleucina 22 , Idoso , Humanos , Camundongos , Masculino , Feminino , Animais , Lactente , Pré-Escolar , Astragalus propinquus/química , Intestinos , Transdução de Sinais , Intestino Delgado , Células-Tronco , Polissacarídeos/farmacologia , Envelhecimento , Regeneração
7.
J Ethnopharmacol ; 325: 117889, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336183

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The fruit of Lycium barbarum L. (goji berry) is a traditional Chinese medicine and is often used to improve vision. While various goji cultivars may differentially treat retinal degeneration, however their comparative effectiveness remains unclear. AIM OF THE STUDY: To evaluate the protective effects of four goji cultivars on NaIO3-induced retinal degeneration mouse model and identify the most therapeutically potent cultivar. MATERIALS AND METHODS: The principal compounds in the extracts of four goji cultivars were characterized by UPLC-Q-TOF/MS. A retinal degeneration mouse model was established via NaIO3 injection. Dark-light transition and TUNEL assays were used to assess visual function and retinal apoptosis. The levels of antioxidative, inflammatory, and angiogenic markers in serums and eyeballs were measured. Hierarchical cluster analysis, principal component analysis and partial least squares-discriminant analysis were used to objectively compare the treatment responses. RESULTS: Sixteen compounds were identified in goji berry extracts. All goji berry extracts could reverse NaIO3-induced visual impairment, retinal damage and apoptosis. The samples from the cultivar of Ningqi No.1 significantly modulated oxidative stress, inflammation, and vascular endothelial growth factor levels, which are more effectively than the other cultivars based on integrated multivariate profiling. CONCLUSION: Ningqi No.1 demonstrated a stronger protective effect on mouse retina than other goji cultivars, and is a potential variety for further research on the treatment of retinal degeneration.


Assuntos
Lycium , Degeneração Retiniana , Camundongos , Animais , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/tratamento farmacológico , Lycium/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estresse Oxidativo , Modelos Animais de Doenças
8.
J Ethnopharmacol ; 325: 117869, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38342153

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Coronary heart disease (CHD) is a chronic disease that seriously threatens people's health and even their lives. Currently, there is no ideal drug without side effects for the treatment of CHD. Trichosanthis Pericarpium (TP) has been used for several years in the treatment of diseases associated with CHD. However, there is still a need for systematic research to unravel the pharmacodynamic substances and possible mechanism of TP in the treatment of coronary heart. AIM OF THE STUDY: The purpose of current study was to explore the pharmacodynamic substances and potential mechanisms of TP in the treatment of CHD via integrating network pharmacology with plasma pharmacochemistry and experimental validation. MATERIALS AND METHODS: The effect of TP intervention in CHD was firstly assessed on high-fat diet combined with isoprenaline-induced CHD rats and H2O2-induced H9c2 cells, respectively. Then, the LC-MS was utilized to identify the absorbed components of TP in the plasma of CHD rats, and this was used to develop a network pharmacology prediction to obtain the possible active components and mechanisms of action. Molecular docking and immunohistochemistry were used to explore the interaction between TP and key targets. Subsequently, the efficacy of the active ingredients was investigated by in vitro cellular experiments, and their metabolic pathways in CHD rats were further analyzed. RESULTS: The effects of TP on amelioration of CHD were verified by in vivo and in vitro experiments. Plasma pharmacochemistry and network pharmacology screened six active components in plasma including apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin. The interaction of these compounds with potential key targets AKT1, IL-1ß, IL-6, TNF-α and VEGFA were preliminarily verified by molecular docking. And immunohistochemical results showed that TP reduced the expression of AKT1, IL-1ß, IL-6, TNF-α and VEGFA in CHD rat hearts. Then cellular experiments confirmed that apigenin, phenylalanine, quercetin, linoleic acid, luteolin, and tangeretin were able to reduce the ROS level in H2O2-induced HUVEC cells and promote the migration and tubule formation of HUVEC cells, indicating the pharmacodynamic effects of the active components. Meanwhile, the metabolites of TP in CHD rats suggested that the pharmacological effects of TP might be the result of the combined effects of the active ingredients and their metabolites. CONCLUSION: Our study found that TP intervention in CHD is characterized by multi-component and multi-target regulation. Apigenin, phenylalanine, linoleic acid, quercetin, luteolin, and tangeretin are the main active components of TP. TP could reduce inflammatory response and endothelial damage by regulating AKT1, IL-1ß, IL-6, TNF-α and VEGFA, reduce ROS level to alleviate the oxidative stress situation and improve heart disease by promoting angiogenesis to regulate endothelial function. This study also provides an experimental and scientific basis for the clinical application and rational development of TP.


Assuntos
Doença das Coronárias , Medicamentos de Ervas Chinesas , Humanos , Animais , Ratos , Apigenina , Luteolina/farmacologia , Luteolina/uso terapêutico , Peróxido de Hidrogênio , Interleucina-6 , Ácido Linoleico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Quercetina , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Doença das Coronárias/tratamento farmacológico , Interleucina-1beta , Fenilalanina
9.
Zhongguo Zhong Yao Za Zhi ; 49(2): 344-353, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403310

RESUMO

In the context of the "antibiotic ban" era, the feed conversion of medicinal and edible traditional Chinese medicine(TCM) resources is a research hotspot in the field of antibiotic alternatives development. How to develop feed products that are beneficial to agriculture and livestock while ensuring nutrient balance and precision using medicinal and edible TCM resources as raw materials has become a challenge. Artificial intelligence(AI) technology has unique advantages in feed production and improving the efficiency of intelligent breeding. If AI technology is applied to the feed development of medicinal and edible TCM resources, it is possible to realize feeding and antibiotic-replacement value while ensuring precise nutrition. In order to better apply AI technology in the field of feed development of medicinal and edible TCM resources, this article used CiteSpace software to carry out literature visualization analysis and found that AI technology had a good application in the field of feed formulation optimization in recent years. However, there is still a gap in the research on the intelligent utilization of medicinal and edible TCM resources. Nonetheless, it is feasible for AI technology to be applied to the feed conversion of medicinal and edible TCM resources. Therefore, this article proposed for the first time an intelligent formulation system framework for feed materials derived from medicinal and edible TCM resources to provide new ideas for research in the field of feed development of medicinal and edible TCM resources and the research on the development of antibiotic alternatives. At the same time, it can pave the way for a new green industry chain for contemporary animal husbandry and the TCM industry.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Animais , Inteligência Artificial , Criação de Animais Domésticos , Tecnologia
10.
Int J Biol Macromol ; 261(Pt 1): 129674, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280710

RESUMO

The pro-tumorigenic M2-type tumor-associated macrophages (TAMs) in the immunosuppressive tumor microenvironment (TME) promote the progression, angiogenesis, and metastasis of breast cancer. The repolarization of TAMs from an M2-type toward an M1-type holds great potential for the inhibition of breast cancer. Here, we report that Lycium barbarum polysaccharides (LBPs) can significantly reconstruct the TME by modulating the function of TAMs. Specifically, we separated four distinct molecular weight segments of LBPs and compared their repolarization effects on TAMs in TME. The results showed that LBP segments within 50-100 kDa molecular weight range exhibited the prime effect on the macrophage repolarization, augmented phagocytosis effect of the repolarized macrophages on breast cancer cells, and regression of breast tumor in a tumor-bearing mouse model. In addition, RNA-sequencing confirms that this segment of LBP displays an enhanced anti-breast cancer effect through innate immune responses. This study highlights the therapeutic potential of LBP segments within the 50-100 kDa molecular weight range for macrophage repolarization, paving ways to offer new strategies for the treatment of breast cancer.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Neoplasias , Camundongos , Animais , Macrófagos Associados a Tumor , Peso Molecular , Medicamentos de Ervas Chinesas/farmacologia , Macrófagos , Microambiente Tumoral , Neoplasias/patologia
11.
J Therm Biol ; 119: 103752, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38194751

RESUMO

Heat stress can lead to hormonal imbalances, weakened immune system, increased metabolic pressure on the liver, and ultimately higher animal mortality rates. This not only seriously impairs the welfare status of animals, but also causes significant economic losses to the livestock industry. Due to its rich residual bioactive components and good safety characteristics, traditional Chinese medicine (TCM) residue is expected to become a high-quality feed additive with anti-oxidative stress alleviating function. This study focuses on the potential of Shengxuebao mixture herbal residue (SXBR) as an anti-heat stress feed additive. Through the UPLC (ultra performance liquid chromatography) technology, the average residue rate of main active ingredients from SXBR were found to be 25.39%. SXBR were then added into the basal diet of heat stressed New Zealand rabbits at the rates of 5% (SXBRl), 10% (SXBRm) and 20% (SXBRh). Heat stress significantly decreased the weight gain, as well as increased neck and ear temperature, drip loss in meat, inflammation and oxidative stress. Also, the hormone levels were disrupted, with a significant increase in serum levels of CA, COR and INS. After the consumption of SXBR in the basal diet for 3 weeks, the weight of New Zealand rabbits increased significantly, and the SXBRh group restored the redness value of the meat to a similar level as the control group. Furthermore, the serum levels T3 thyroid hormone in the SXBRh group and T4 thyroid hormone in the SXBRm group increased significantly, the SXBRh group showed a significant restoration in inflammation markers (IL-1ß, IL-6, and TNF-α) and oxidative stress markers (total antioxidant capacity, HSP-70, MDA, and ROS) levels. Moreover, the real-time fluorescence quantitative PCR analysis found that, the expression levels of antioxidant genes such as Nrf2, HO-1, NQO1, and GPX1 were significantly upregulated in the SXBRh group, and the expression level of the Keap1 gene was significantly downregulated. Additionally, the SXBRm group showed significant upregulation in the expression levels of HO-1 and NQO1 genes. Western blot experiments further confirmed the up-regulation of Nrf2, Ho-1 and NQO1 proteins. This study provides a strategy for the utilization of SXBR and is of great significance for the green recycling of the TCM residues, improving the development of animal husbandry and animal welfare.


Assuntos
Antioxidantes , Transtornos de Estresse por Calor , Coelhos , Animais , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch , Estresse Oxidativo , Resposta ao Choque Térmico , Inflamação , Transtornos de Estresse por Calor/veterinária
12.
J Ethnopharmacol ; 324: 117816, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38286154

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bufei Huoxue capsule (BHC) as a classic Chinese patent medicine formula, has the efficacy of tonifying the lungs and activating the blood. It has been extensively used in China for the treatment of chronic obstructive pulmonary disease (COPD) clinically. However, its mechanism is still unclear, which hampers the applications of BHC in treating COPD. AIM OF THE STUDY: The purpose of the present study was to demonstrate the protective efficacy and mechanism of BHC on COPD model rats by integrating serum metabolomics analysis and network pharmacology study. MATERIALS AND METHODS: A COPD rat model was established by cigarette fumigation combined with lipopolysaccharide (LPS) airway drip for 90 consecutive days. After oral administration for 30 days, the rats were placed in the body tracing box of the EMKA Small Animal Noninvasive Lung Function Test System to determine lung function related indexes. Histopathological alteration was observed by H&E staining and Masson staining. The serum levels of inflammatory cytokine, matrix metalloprotein 9, and laminin were determined by ELISA kits. Oxidative stress levels were tested by biochemical methods. UHPLC-Q-TOF/MS analysis of serum metabolomics and network pharmacology were performed to reveal the bioactive metabolites, key components and pathways for BHC treating COPD. WB and ELISA kits were used to verify the effects of BHC on key pathway. RESULTS: BHC could improve lung function, immunity, lung histopathological changes and collagen deposition in COPD model rats. It also could significantly reduce inflammatory response in vivo, regulate oxidative stress level, reduce laminin content, and regulate protease-antiprotease balance. Metabolomics analysis found 46 biomarkers of COPD, of which BHC significantly improved the levels of 23 differential metabolites including arachidonic acid, leukotriene B4 and prostaglandin E2. Combined with the results of network pharmacology, the components of BHC, such as calycosin, oxypaeoniflora, (S)-bavachin and neobavaisoflavone could play therapeutic roles through the arachidonic acid pathway. In addition, the results of WB and ELISA indicated that BHC could suppress the expressions of COX2 and 5-LOX in lung tissues and inhibit the generation of AA and its metabolites in serum samples. Regulation of arachidonic acid metabolic pathway may be the crucial mechanism for BHC treating COPD. CONCLUSIONS: In summary, the studies indicated that BHC exhibited the protective effect on COPD model rats by anti-inflammatory and anti-oxidative properties through arachidonic acid metabolism pathway. This study provided beneficial support for the applications of BHC in treating COPD.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Doença Pulmonar Obstrutiva Crônica , Ratos , Animais , Farmacologia em Rede , Ácido Araquidônico , Ratos Sprague-Dawley , Doença Pulmonar Obstrutiva Crônica/metabolismo , Metabolômica/métodos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Laminina
13.
J Ethnopharmacol ; 322: 117575, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38103846

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The occurrence and development of atherosclerosis, a common chronic inflammatory vascular disease, are closely related to cardiovascular and cerebrovascular diseases. Banxia Baizhu Tianma Decoction (BBTD) is a representative traditional Chinese medicine formula that resolves phlegm, disperses wind, invigorates the spleen and eliminates dampness and is also a commonly used clinical medication for treating vascular diseases. AIM OF THE STUDY: To explore the pharmacological mechanisms of BBTD in alleviating atherosclerosis, the present study was carried out by conducting an integrative analysis of aortic and perivascular adipose tissue (PVAT) proteomics and metabolomics. MATERIALS AND METHODS: Eight-week-old ApoE-/- mice were randomly divided into the BBTD group and the model group, and nine age-matched C57BL/6J (C57) mice were used as the control group (n = 9). The C57 mice were fed a standard diet, while the ApoE-/- mice were fed a high-fat, high-cholesterol diet for 12 weeks. Mice in the BBTD group were transgastrically administered BBTD at a dose of 17.8 g/kg/day for 8 weeks, while the model group and control group mice received an equivalent volume of saline by gavage. Histomorphology of the aortas and PVAT was assessed by HE staining, oil red O staining, Masson staining, and α-SMA and CD68 immunohistochemical methods. An integrative analysis of aortic proteomics, PVAT proteomics and PVAT metabolomics was conducted to study the pharmacological mechanisms of BBTD. RESULTS: Compared to the model group, mice treated with BBTD had thicker fibrous caps, increased collagen content, less erosion of smooth muscle cells and infiltration of macrophages, as well as a relatively low inflammatory response level, suggesting that BBTD treatment reduced plaque vulnerability. Omics analysis suggested that BBTD treatment demonstrated anti-atherosclerotic effects and increased plaque stability in the aorta by activating the TGF-beta pathway. Simultaneously, BBTD inhibited PVAT inflammation levels (decreased the levels of MCP and IL-6). Proteomics and metabolomics of PVAT suggested that the targets of BBTD included upregulation of the α-linolenic acid metabolic pathway and downregulation of multiple inflammatory pathways, such as the NF-kappa B signalling pathway, primary immunodeficiency and Th17 cell differentiation in PVAT. CONCLUSIONS: BBTD reduces the vulnerability of atherosclerotic plaques and inhibits the inflammatory phenotype of perivascular adipose tissue.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Placa Aterosclerótica , Camundongos , Animais , Camundongos Knockout para ApoE , Camundongos Endogâmicos C57BL , Aterosclerose/genética , Placa Aterosclerótica/tratamento farmacológico , Tecido Adiposo/metabolismo , Obesidade , Apolipoproteínas E/genética
14.
J Ethnopharmacol ; 319(Pt 3): 117356, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37890803

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which lacks effective treatment. Salviae Miltiorrhizae Radix Et Rhizoma is one of the key compatible traditional Chinese medicine in the prescription for the treatment of DN. Salvianolic acid B and tanshinone IIA are two monomer active components with high content and clear structure in Salvia miltiorrhiza, which can effectively improve early (DN), respectively. AIM OF THE STUDY: To evaluate the compatible effect of salvianolic acid B and tanshinone IIA on early DN rats and elucidate the mechanism. METHODS: Early DN rats were induced by streptozotocin combined with high glucose and high fat diet, and intervened by salvianolic acid B, tanshinone IIA and their combinations. The pathological sections of kidney, liver and biochemical indexes were analyzed. Network pharmacology method was used to predict the possible mechanism. The mechanisms were elucidated by metabolomics, Elisa, and Western blot. RESULTS: Given our analysis, salvianolic acid B and tanshinone IIA can synergistically regulate 24 h UTP, Urea and Scr and improve kidney damage in early DN rats. The metabolic abnormalities of early DN rats were improved by regulating the biosynthesis of saturated fatty acids, glycerol phospholipid metabolism, steroid biosynthesis, alanine, and arachidonic acid. Salvianolic acid B combined with tanshinone IIA at a mass ratio of 13.4:1 can significantly reduce kidney inflammation, up-regulate p-PI3K/PI3K and p-Akt/Akt and down-regulate p-NF-κB/NF-κB, which better than the single-used group and can be reversed by PI3K inhibitor LY294002. CONCLUSION: Salvianolic acid B and tanshinone IIA can synergistically improve glucose and lipid disorders, liver and kidney damage, and resist kidney inflammation in early DN rats, and the mechanism may be related to regulating PI3K/Akt/NF-κB signaling pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Nefrite , Animais , Ratos , NF-kappa B , Nefropatias Diabéticas/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Glucose , Inflamação
15.
J Ethnopharmacol ; 323: 117666, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38159822

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lizhong decoction (LZD), a classical herbal prescription recorded by Zhang Zhongjing in Treatise on Febrile and Miscellaneous Diseases, has been extensively used to treat ulcerative colitis (UC) in clinical practice for thousands of years. However, its material basis and underlying mechanism are not yet clear. AIM OF THE STUDY: This study aims to explore the material basis and potential mechanism of LZD against UC based on the spectrum-effect relationship and network pharmacology. MATERIALS AND METHODS: First, LZD was extracted by a systematic solvent extraction method into four parts. Ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS/MS) technique was used to identify the compounds from different polar parts, and dextran sulfate sodium (DSS)-induced colitis model was used to evaluate the efficacy of each fraction. Then, the spectrum-effect analyses of compounds and efficacy indicators were established via grey relational analysis (GRA), bivariate correlation analysis (BCA) and partial least squares regression (PLSR). Finally, the potential mechanism of LZD for UC therapy was explored by network pharmacology, and the results were further verified by molecular docking and reverse transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS: 66 chemical components of LZD were identified by UPLC-Q-TOF-MS/MS technology. The pharmacodynamic results showed that extraction parts of LZD had different therapeutic effects on UC, among which ethyl acetate and n-butanol extracts had significant anti-colitis effects, which might be the main effective fractions of LZD. Furthermore, the spectrum-effect analyses indicated that 21 active ingredients such as liquiritin apioside, neolicuroside, formononetin, ginsenoside Rg1, 6-gingesulfonic acid, licoricesaponin A3, liquiritin, glycyrrhizic acid were the main material basis for LZD improving UC. Based on the above results, network pharmacology suggested that the amelioration of LZD on UC might be closely related to the PI3K-Akt signaling pathway. Additionally, molecular docking technology and RT-qPCR further verified that LZD could markedly inhibit the PI3K-Akt signaling pathway. CONCLUSION: Overall, our study first identified the chemical compositions of LZD by using UPLC-Q-TOF-MS/MS. Furthermore, the material basis and potential mechanism of LZD in improving UC were comprehensively elucidated via spectrum-effect relationships, network pharmacology, molecular docking and experimental verification. The proposed strategy provided a systematic approach for exploring how herbal medicines worked. More importantly, it laid the solid foundation for further clinical application and rational development of LZD.


Assuntos
Colite Ulcerativa , Colite , Medicamentos de Ervas Chinesas , Humanos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Espectrometria de Massas em Tandem , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
16.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5142-5151, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38114104

RESUMO

In recent years, the traditional Chinese medicine(TCM)industry has experienced rapid development, resulting in a significant amount of Chinese medicinal residues generated during the industrial manufacturing process. Currently, the main methods of handling Chinese medicinal residues include stacking, landfilling, and incineration, which lead to substantial resource waste and potential environmental pollution. With "carbon peak" and "carbon neutrality"( "Dual Carbon")becoming national strategic goals, the TCM industry is ushering in a new wave of "low-carbon" trends, and the high-value utilization of Chinese medicinal residues has become a breakthrough for implementing a low-carbon economy in the TCM sector. From the perspective of a low-carbon economy, this article reviewed literature in China and abroad to summarize the microbial transformation technology, enzymatic conversion technology, biomass pyrolysis, gasification, hydrothermal liquefaction, and other high-value utilization technologies for Chinese medicinal residues. It also overviewed the applications of Chinese medicinal residue in feed additives, organic fertilizers, edible mushroom cultivation substrates, preparation of activated carbon for wastewater treatment, and new energy batteries. Considering the current status of resource utilization of Chinese medicinal residues, feasible strategies and suggestions for resource development and utilization were proposed to improve the quality and efficiency of the Chinese medicinal resource industry chain and promote green development, thereby providing research ideas and theoretical basis for achieving carbon peak and carbon neutrality goals.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , China , Tecnologia , Indústrias
17.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4545-4551, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802795

RESUMO

It has become a common consensus that resource conservation and intensive recycling for improving resource utilization efficiency is an important way to achieve carbon peak and carbon neutrality(dual carbon). Traditonal Chinese medicine(TCM)resources as national strategic resources are the material basis and fundamental guarantee for the development of TCM industry and health services. However, the rapid growth of China's TCM industry and the continuous expansion and extension of the industrial chain have exposed the low efficiency of TCM resources. Resource waste and environmental pollution caused by the treatment and discharge of TCM waste have emerged as major problems faced by the development of the industry, which has aroused wide concern. Considering the dual carbon goals, this paper expounds the role and potential of TCM resource recycling and circular economy industry development. Taking the typical model of TCM resource recycling as the case of circular economy industry in reducing carbon source and increasing carbon sink, this paper puts forward the suggestions for the TCM circular economy industry serving the double carbon goals. The suggestions mainly include strengthening the policy and strategic leading role of the double carbon goals, building an objective evaluation system of low-carbon emission reduction in the whole industrial chain of TCM resources, building an industrial demonstration park for the recycling of TCM resources, and promoting the establishment of a circular economy system of the whole industrial chain of TCM resources. These measures are expected to guide the green transformation of TCM resource industry from linear economic model to circular economy model, provide support for improving the utilization efficiency and sustainable development of TCM resources, and facilitate the low-carbon and efficient development of TCM resource industry and the achievement of the double carbon goals.


Assuntos
Reutilização de Equipamento , Medicina Tradicional Chinesa , Objetivos , Poluição Ambiental , Desenvolvimento Econômico , Carbono , China
18.
Int J Biol Macromol ; 253(Pt 5): 127256, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37802446

RESUMO

At present, the structure-activity relationship of polysaccharides is a common and important focus in the fields of glycobiology and carbohydrate chemistry. To better understand the effect of specific polysaccharide structures on bioactive orientation, four homogeneous polysaccharides from Lycii fructus, one neutral along with three acidic polysaccharides, were purified, structurally characterized and comparatively evaluated on the antioxidative and anti-aging activities. The GC-MS-based monosaccharide composition analysis and methylation results showed that the LFPs had similar glycosyl types but varied proportions. Nuclear magnetic resonance (NMR) spectroscopy showed that LFPs consisted of arabinogalactan, rhamnogalacturonan and homogalacturonan structural domains. The results of the structure-activity relationship indicated that the antioxidative activity was positively correlated with the galacturonic acid (GalA) content, while the neutral multi-branched chains might be responsible for the anti-aging activity. This study is the first time to compare the principal structures and multiple biological activities of LFPs, which provided a reference for the industrial development and deep excavation of the health value of LFPs.


Assuntos
Medicamentos de Ervas Chinesas , Polissacarídeos , Polissacarídeos/química , Relação Estrutura-Atividade , Frutas/química , Medicamentos de Ervas Chinesas/química , Espectroscopia de Ressonância Magnética , Antioxidantes/farmacologia , Antioxidantes/análise
19.
Chin Med ; 18(1): 103, 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598173

RESUMO

BACKGROUND: Fushenmu (Pini Radix in Poria, FSM) is a folk parasitic herb that has been mainly used for palpitation and amnesiain in traditional Chinese medicine (TCM). Recently, as an individual herb or a component of formulations, Fushenmu exhibits therapeutic potential for the treatment of cardiac arrhythmias. Yet, how specific targets or pathways of Fushenmu inhibit arrhythmia has not yet been reported. METHODS: Here, based on clinical functional genomics, metabolomics and molecular biologic technologies, a network construction strategy was adopted to identify FSM therapeutic targets and biomarkers that might explore its functions. RESULTS: In this study, it was found that FSM recovered arrhythmia-associated heart failure in barium chloride (BaCl2) induced arrhythmic zebrafish embryos, as was evidenced by the shortened cardiac sinus venosus-bulbus arteriosus (SV-BA) distance, smaller cardiovascular bleeding areas, and reduced cardiomyocyte apoptosis. Moreover, analysis via ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-QTOF-ESI-MS/MS) components identification and network pharmacology prediction showed that 11 main active components of FSM acted on 33 candidate therapeutic targets. Metabolomic analysis also suggested that FSM could rescue 242 abnormal metabolites from arrhythmic zebrafish embryos. Further analysis based on the combination of target prediction and metabolomic results illustrated that FSM down-regulated Ryanodine Receptor 2 (RyR2) expressions, inhibited adrenaline and 3',5'-Cyclic AMP (cAMP) levels in a dose-dependent manner, which was confirmed by metabolites quantification and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) assay. CONCLUSION: In summary, this study revealed that FSM mitigated BaCl2 induced cardiac damage caused by arrhythmia by suppressing RyR2 expressions, decreasing adrenaline and cAMP through the adrenergic signalling pathway.

20.
Am J Chin Med ; 51(6): 1527-1546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37518098

RESUMO

Inflammatory bowel disease (IBD) is a recurrent disease associated with a potential risk of colorectal cancer. Abelmoschus manihot (AM), a Chinese herbal medicine, is known to alleviate IBD. However, its mechanism of action requires further clarification. Here, we focused on the role of IL-10 and the gut microbiota in the mechanism of action of AM. The effects of AM on intestinal inflammation, mucus production, and gut microbes were evaluated in dextran sodium sulfate (DSS)-induced acute and chronic IBD models and in IL-10-deficient mice (IL-10[Formula: see text]). AM exhibited protective effects on acute and chronic models of IBD in wild-type mice by restoring body weight and colon length, promoting IL-10 secretion, and decreasing TNF-[Formula: see text] levels. Moreover, AM alleviated inflammatory infiltration, increased mucin 2 transcription, and increased the number of goblet cells in the colon. On the contrary, these effects were diminished in IL-10[Formula: see text] mice, which implied that the effect of AM on intestinal inflammation is IL-10-dependent. A gut microbial sequencing analysis showed that gut microbial dysbiosis was modulated by AM intervention. The regulatory effects of AM on Eggerthellaceae, Sutterellaceae, Erysipelotrichaceae, Burkholderiaceae, Desulfovibrionaceae, and Enterococcaceae were dependent on IL-10. These results revealed that AM ameliorated IBD and modulated gut microbes by promoting IL-10 secretion, indicating that AM has the potential to improve IBD and that AM is IL-10-dependent.


Assuntos
Abelmoschus , Colite , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Interleucina-10 , Medicina Tradicional Chinesa , Doenças Inflamatórias Intestinais/tratamento farmacológico , Colo , Inflamação , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA