Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 68(19): 2180-2189, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37558535

RESUMO

Chemical transformation strategy is capable of fabricating nanomaterials with well-defined structures and fascinating performance via controllable crystallization kinetics in the phase transformation. V2CTx MXene has been used as precursors to fabricate vanadium porphyrin metal-organic frameworks (V-PMOFs) via the coordination of deprotonated carboxylic acid ligands. However, the rational and in-depth exploration of synthesis mechanism with the aim of enriching the variety of MXene (i.e., Ti3C2Tx) and organic ligands (i.e., catechol-based) to design new MOFs is rarely reported. Herein, we have first developed a metal ion assistant transformation strategy to synthesize three-dimensional catechol-based TiCu-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) MOFs with a non-interpenetrating SrSi2 (srs) framework using two-dimensional Ti3C2Tx as precursors. The unique synergetic transformation mechanism involves the electron transfer from Ti3C2Tx to electrostatically adsorbed Cu2+ ion for redox reaction, the subsequent Ti-C bond rupture for Ti4+ ion release, and the continuous chelation coordination between Ti4+/Cu2+ and HHTP. Ti3C2Tx precursors and auxiliary metal ion could be rationally substituted by V2CTx and Mn+ (e.g., Ni2+, Co2+, Mn2+, and Zn2+), respectively. This strategy lays the foundation for the design and synthesis of innovative and multifarious MOFs derived from MXene or other unconventional metal precursors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA