Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 16: 3169-3182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36158237

RESUMO

Introduction: Head and neck tumors account for more than 6% of all cancers. The primary treatment for tumors of the head and neck is radiation therapy, which can induce oropharyngeal mucositis as a side effect. At present, there is no widely available therapeutic for the treatment of oropharyngeal mucositis in clinical practice. Based on the traditional prescription Liushen Wan, the pathogenesis and pathology, we developed a new Chinese medicine prescription and made Zhenhuang submicron emulsion (ZHSE) spray, which has an efficacious therapeutic effect for oropharyngeal mucositis. However, its mechanism is unclear. Methods: This research explored the mechanism behind the modulatory effects of ZHSE by a strategy of metabolomics and network pharmacology. Multivariate data analyses, including unsupervised principal component analysis (PCA) and supervised orthogonal partial least squares discriminant analysis (OPLS-DA), were performed. Potential biomarkers were identified depending on the mass-charge ratio of the selected compound. Statistical and pathway enrichment analysis was performed in the KEGG pathway database. Network pharmacology combining metabolomic analyses was conducted to illustrate the key targets and pathways. Results: Critical metabolic pathways were investigated, 56f biomarkers were enriched and key metabolites such as linoleic acid, 9,10-epoxyoctadecenoic acid, acetoacetic acid and citric acid were identified. A complex network of "compound-target-potential metabolite" interactions was drawn to illuminate the regulation of chemical constituents on key metabolites. These findings manifest that ZHSE regulates endogenous metabolite disorders during the treatment of oropharyngeal mucositis by various constituents, interacting with multiple targets associated with inflammation and pain. Conclusion: In this work, we determined several critical biomarkers and metabolic pathways and identified the possible regulatory mechanism by which ZHSE functions in the treatment of oropharyngeal mucositis. This study provides a new perspective on integrating metabolomics and network pharmacology for exploring improved therapy for head and neck tumors based on the traditional classic prescription of LSW.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias de Cabeça e Pescoço , Mucosite , Biomarcadores , Ácido Cítrico , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Emulsões , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Ácido Linoleico , Metabolômica , Farmacologia em Rede
2.
Biol Trace Elem Res ; 200(4): 1956-1964, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34275097

RESUMO

Ramulus Mori alkaloids, also known as SangZhi alkaloids (SZ-A), is a natural medicine used for the treatment of type 2 diabetes mellitus in China. SZ-A is extracted from Morus alba L., which grows in the natural environment and may be contaminated by heavy metals and harmful elements. These contaminants can enter SZ-A products during the extraction of M. alba, thereby posing a threat to patient health. Therefore, it is necessary to formulate scientific and reasonable limits to ensure patient safety. For this purpose, in this study, we used the extraction process of SZ-A as the object of investigation and determined the content of five harmful elements: Cd, Pb, As, Hg, and Cu in the herb raw material, SZ-A product, and its intermediates obtained in different extraction steps. Next, the transfer rate of harmful elements in the extraction process was used as an indicator to evaluate the ability of different operations to remove harmful elements. Subsequently, the health risks of heavy metals and harmful elements in SZ-A were assessed. Our results demonstrated that M. alba has little risk of contamination by Hg. The cation and anion resin refining processes are the best effective method to remove Cd, Pb, and Cu from the products. However, As is not easily eliminated during the water extraction. There is as much as 87% of As transferred from the herb raw material to the water-extracted intermediate, while Cd, Pb, and Cu are rarely transferred (6% to 17%) under the same conditions. Overall, the results indicate that the regulatory standard limits for Cd, Pb, As, Hg, and Cu contained in natural medicine Ramulus Mori alkaloids are set to 1, 5, 2, 0.2, and 20 µg/g, respectively, which is the most scientific and it can guarantee the safety of patients.


Assuntos
Diabetes Mellitus Tipo 2 , Metais Pesados , China , Contaminação de Medicamentos , Monitoramento Ambiental , Humanos , Medicina Tradicional Chinesa , Metais Pesados/análise , Medição de Risco
3.
Chem Pharm Bull (Tokyo) ; 59(3): 321-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21372412

RESUMO

The objective of this paper was to develop a novel Cremophor-free, autoclave stable, intravenous emulsion for paclitaxel (PACE). A paclitaxel-cholesterol complex was used as the drug carrier to improve the solubility of paclitaxel in the oil phase of emulsions. The complex and PACE were prepared by rotary evaporation and high-pressure homogenization, respectively. Effects of oil phases, emulsifiers and pH values on the characteristics of PACE were investigated. PACE was characterized with regard to its appearance, morphology, osmolality, pH value, particle size, zeta potential, encapsulation efficiency and stability. Hypersensitivity was evaluated by guinea pig hypersensitivity reaction. The final formulation was composed of the complex, soybean oil, medium-chain triglyceridel, soybean lecithin, poloxamer 188 and glycerol. The resulting PACE had an encapsulation efficiency of 97.3% with a particle size of 135 nm and a zeta potential of -38.3 mV. Osmolality and pH of the formulation were 383 mOsmol/kg and 4.5, respectively. The formulation survived autoclaving at 115 °C for 30 min and remained stable for at least 12 months at 6 °C. PACE also exhibited a better tolerance than an equal dose of Cremophor-based paclitaxel injection in guinea pigs, as no obvious hypersensitivity reaction was observed. These results suggested that PACE has a great potential for industrial-scale production and clinical applications.


Assuntos
Antineoplásicos Fitogênicos/química , Colesterol/química , Emulsões/química , Hipersensibilidade/tratamento farmacológico , Paclitaxel/química , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Varredura Diferencial de Calorimetria , Química Farmacêutica , Portadores de Fármacos/química , Estabilidade de Medicamentos , Glicerol/química , Cobaias , Concentração de Íons de Hidrogênio , Injeções Intravenosas , Concentração Osmolar , Paclitaxel/administração & dosagem , Tamanho da Partícula , Lectinas de Plantas/química , Poloxâmero/química , Óleo de Soja/química , Proteínas de Soja/química , Triglicerídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA