Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pain ; 16: 1744806920984079, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33356837

RESUMO

BACKGROUND: Myofascial pain syndrome (MPS) is an important clinical condition that is characterized by chronic muscle pain and a myofascial trigger point (MTrP) located in a taut band (TB). Previous studies showed that EphrinB1 was involved in the regulation of pathological pain via EphB1 signalling, but whether EphrinB1-EphB1 plays a role in MTrP is not clear. METHODS: The present study analysed the levels of p-EphB1/p-EphB2/p-EphB3 in biopsies of MTrPs in the trapezius muscle of 11 MPS patients and seven healthy controls using a protein microarray kit. EphrinB1-Fc was injected intramuscularly to detect EphrinB1s/EphB1s signalling in peripheral sensitization. We applied a blunt strike to the left gastrocnemius muscles (GM) and eccentric exercise for 8 weeks with 4 weeks of recovery to analyse the function of EphrinB1/EphB1 in the muscle pain model. RESULTS: P-EphB1, p-EphB2, and p-EphB3 expression was highly increased in human muscles with MTrPs compared to healthy muscle. EphB1 (r = 0.723, n = 11, P < 0.05), EphB2 (r = 0.610, n = 11, P < 0.05), and EphB3 levels (r = 0.670, n = 11, P < 0.05) in the MPS group were significantly correlated with the numerical rating scale (NRS) in the MTrPs. Intramuscular injection of EphrinB1-Fc produces hyperalgesia, which can be partially prevented by pre-treatment with EphB1-Fc. The p-EphB1 contents in MTrPs of MPS animals were significantly higher than that among control animals (P < 0.01). Intramuscular administration of the EphB1 inhibitor EphB1-Fr significantly suppressed mechanical hyperalgesia. CONCLUSIONS: The present study showed that the increased expression of p-EphB1/p-EphB2/p-EphB3 was related to MTrPs in patients with MPS. This report is the first study to examine the function of EphrinB1-EphB1 signalling in primary muscle afferent neurons in MPS patients and a rat animal model. This pathway may be one of the most important and promising targets for MPS.


Assuntos
Efrina-B1/metabolismo , Hiperalgesia/patologia , Músculo Esquelético/patologia , Mialgia/metabolismo , Síndromes da Dor Miofascial/patologia , Receptor EphB1/metabolismo , Transdução de Sinais , Animais , Modelos Animais de Doenças , Humanos , Hiperalgesia/complicações , Masculino , Células Musculares/metabolismo , Células Musculares/patologia , Mialgia/complicações , Síndromes da Dor Miofascial/complicações , Fosforilação , Ratos Sprague-Dawley , Regulação para Cima
2.
Cell Transplant ; 29: 963689720960190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33081508

RESUMO

The purpose of this study was to investigate whether the ERK signaling pathway was involved in ameliorating chronic myofascial hyperalgesia from contused gastrocnemius muscle in rats. We established an animal model associated with myofascial pain syndrome and described the mechanism of muscle pain in an animal model. Changes in the mechanical pain threshold were observed 0.5, 1, 2, 3, 4, 5, 8, 12, 18, and 24 h after ERK inhibitor injection around myofascial trigger points (MTrPs) of the gastrocnemius muscle in rats. Morphological changes in gastrocnemius muscle cells were observed by hematoxylin and eosin (H&E) staining. ERK signaling pathway activation was detected through immunohistochemistry and Western blotting. The main morphological characteristics of injured muscle fibers around MTrPs include gathered circular or elliptical shapes of different sizes in the cross-section and continuous inflated and tapering fibers in the longitudinal section. After intramuscular injection of U0126 (ERK inhibitor), the mechanical pain threshold significantly increased. The reduction in mechanical hyperalgesia was accompanied by reduced ERK protein phosphorylation, myosin light chain kinase (MLCK) protein, p-MLC protein expression, and the cross-sectional area of skeletal muscle cells around MTrPs. An ERK inhibitor contributed to the attenuation of mechanical hyperalgesia in the rat myofascial pain model, and the increase in pain threshold may be related to MLCK downregulation and other related contraction-associated proteins by ERK.


Assuntos
Sistema de Sinalização das MAP Quinases , Mialgia/enzimologia , Pontos-Gatilho/patologia , Animais , Hiperalgesia/complicações , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Células Musculares/efeitos dos fármacos , Células Musculares/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Mialgia/complicações , Mialgia/patologia , Mialgia/fisiopatologia , Síndromes da Dor Miofascial/complicações , Síndromes da Dor Miofascial/patologia , Síndromes da Dor Miofascial/fisiopatologia , Quinase de Cadeia Leve de Miosina/metabolismo , Limiar da Dor/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA