Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Immunol ; 12: 832942, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111169

RESUMO

Cancer immunotherapy can boost the immune response of patients to eliminate tumor cells and suppress tumor metastasis and recurrence. However, immunotherapy resistance and the occurrence of severe immune-related adverse effects are clinical challenges that remain to be addressed. The tumor microenvironment plays a crucial role in the therapeutic efficacy of cancer immunotherapy. Injectable hydrogels have emerged as powerful drug delivery platforms offering good biocompatibility and biodegradability, minimal invasion, convenient synthesis, versatility, high drug-loading capacity, controlled drug release, and low toxicity. In this review, we summarize the application of injectable hydrogels as a unique platform for targeting the immunosuppressive tumor microenvironment.


Assuntos
Hidrogéis , Hospedeiro Imunocomprometido/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/terapia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais , Antineoplásicos/administração & dosagem , Biomarcadores Tumorais , Estudos Clínicos como Assunto , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Preparações de Ação Retardada , Sistemas de Liberação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Humanos , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/imunologia , Resultado do Tratamento , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
2.
ACS Nano ; 13(11): 12638-12652, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31625721

RESUMO

Photodynamic therapy (PDT) is a clinical cancer treatment modality based on the induction of therapeutic reactive oxygen species (ROS), which can trigger immunogenic cell death (ICD). With the aim of simultaneously improving both PDT-mediated intracellular ROS production and ICD levels, we designed a serum albumin (SA)-coated boehmite ("B"; aluminum hydroxide oxide) organic-inorganic scaffold that could be loaded with chlorin e6 (Ce6), a photosensitizer, and a honey bee venom melittin (MLT) peptide, denoted Ce6/MLT@SAB. Ce6/MLT@SAB was anchored by a boehmite nanorod structure and exhibited particle size of approximately 180 nm. Ce6/MLT@SAB could significantly reduce hemolysis relative to that of free MLT, while providing MLT-enhanced PDT antitumor effects in vitro. Compared with Ce6@SAB, Ce6/MLT@SAB improved Ce6 penetration of cancer cells both in vitro and in vivo, thereby providing enhanced intracellular ROS generation with 660 nm light treatment. Following phototreatment, Ce6/MLT@SAB-treated cells displayed significantly improved levels of ICD and abilities to activate dendritic cells. In the absence of laser irradiation, multidose injection of Ce6/MLT@SAB could delay the growth of subcutaneous murine tumors by more than 60%, compared to controls. When combined with laser irradiation, a single injection and phototreatment with Ce6/MLT@SAB eradicated one-third of subcutaneous tumors in treated mice. The addition of an immune checkpoint blockade to Ce6/MLT@SAB phototreatment further augmented antitumor effects, generating increased numbers of CD4+ and CD8+ T cells in tumors with concomitant reduction of myeloid-derived suppressor cells.


Assuntos
Antineoplásicos , Imunoterapia/métodos , Meliteno , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Morte Celular Imunogênica/efeitos dos fármacos , Meliteno/química , Meliteno/farmacocinética , Meliteno/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/patologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Fármacos Fotossensibilizantes/farmacologia
3.
Biomater Sci ; 7(8): 3158-3164, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31232421

RESUMO

Indocyanine green (ICG) is a clinically-approved near infrared (NIR) dye used for optical imaging. The dye is only slightly soluble in water and is prone to aggregation in saline solutions, so that alternative formulations can improve photophysical performance. Numerous nanoscale formulations of ICG have been described in the literature, but we sought to develop an approach that does not require additional purification steps. Pre-formed liposomes incorporating 45 mol% of the cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) rapidly bind ICG, resulting in enhanced NIR optical properties. ICG binding is dependent on the amount of DOTAP incorporated in the liposomes. A dye-to-lipid mass ratio of [0.5 : 25] is sufficient for full complexation, without additional purification steps following mixing. NIR absorption, fluorescence intensity, and photoacoustic signals are increased for the liposome-bound dye. Not only is the optical character enhanced by simple mixing of ICG with liposomes, but retention in 4T1 mammary tumors is observed following intratumor injection, as assessed by fluorescence and photoacoustic imaging. Subsequent photothermal therapy with 808 nm laser irradiation is effective and results in tumor ablation without regrowth for at least 30 days. Thus, ICG optical properties and photothermal ablation outcomes can be improved by mixing the dye with pre-formed DOTAP liposomes in conditions that result in full dye-binding to the liposomes.


Assuntos
Técnicas de Ablação/métodos , Ácidos Graxos Monoinsaturados/química , Verde de Indocianina/química , Lipossomos/química , Neoplasias Mamárias Experimentais/terapia , Fenômenos Ópticos , Compostos de Amônio Quaternário/química , Animais , Feminino , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Camundongos , Imagem Óptica , Fototerapia
4.
ACS Appl Mater Interfaces ; 9(31): 25755-25766, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28714303

RESUMO

The design of biocompatible and efficacious anticancer biomaterials to achieve relatively low tumor recurrence rates is the main pursuit of cancer photothermal therapy (PTT). RADA16-I is a synthetic amphiphilic peptide with the sequence RADARADARADARADA that can self-assemble into a peptide nanofiber hydrogel. In this study, we synthesized a novel melittin-RADA32-indocyanine green (ICG) hydrogel ("MRI hydrogel"), which contains melittin in the peptide hydrogel backbone and ICG in the hydrogel matrix, for enhanced PTT of glioblastomas. The MRI hydrogel exhibited physiologic characteristics similar to those of the RADA16 hydrogel, while displaying concentration-dependent cytotoxicity to C6 glioma cells and photothermal effects. The in vivo biodistribution of the MRI hydrogel was visualized by near-infrared fluorescence and photoacoustic imaging. More importantly, in vivo PTT provided by the MRI hydrogel significantly reduced the tumor size and the tumor recurrence rate compared with the RADR16-ICG hydrogel and other controls, suggesting a synergistic effect of MRI hydrogel-carried melittin and ICG-based PTT treatment. Thus, MRI provides an alternative tool for the safe and efficient PTT treatment of tumors.


Assuntos
Meliteno/química , Glioblastoma , Humanos , Hidrogéis , Fototerapia , Distribuição Tecidual
5.
Theranostics ; 6(11): 2000-2014, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27698936

RESUMO

Dendritic cell (DC) migration to the lymph node is a key component of DC-based immunotherapy. However, the DC homing rate to the lymphoid tissues is poor, thus hindering the DC-mediated activation of antigen-specific T cells. Here, we developed a system using fluorescent magnetic nanoparticles (α-AP-fmNPs; loaded with antigen peptide, iron oxide nanoparticles, and indocyanine green) in combination with magnetic pull force (MPF) to successfully manipulate DC migration in vitro and in vivo. α-AP-fmNPs endowed DCs with MPF-responsiveness, antigen presentation, and simultaneous optical and magnetic resonance imaging detectability. We showed for the first time that α-AP-fmNP-loaded DCs were sensitive to MPF, and their migration efficiency could be dramatically improved both in vitro and in vivo through MPF treatment. Due to the enhanced migration of DCs, MPF treatment significantly augmented antitumor efficacy of the nanoparticle-loaded DCs. Therefore, we have developed a biocompatible approach with which to improve the homing efficiency of DCs and subsequent anti-tumor efficacy, and track their migration by multi-modality imaging, with great potential applications for DC-based cancer immunotherapy.


Assuntos
Vacinas Anticâncer/administração & dosagem , Células Dendríticas/imunologia , Imunoterapia/métodos , Linfonodos/imunologia , Linfoma/terapia , Magnetoterapia/métodos , Nanopartículas de Magnetita , Animais , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Verde de Indocianina/análise , Imageamento por Ressonância Magnética , Mesotelina , Camundongos Endogâmicos C57BL , Imagem Óptica , Coloração e Rotulagem , Nanomedicina Teranóstica/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA