Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(16): 24360-24374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443536

RESUMO

Domestic wastewater source-separated treatment has attracted wide attention due to the efficiency improvement of sewage treatment systems, energy saving, resource reuse, and the construction and operation cost saving of pipeline networks. Nonetheless, the excess source-separated urine still demands further harmless treatment. Sequencing batch biofilm reactor (SBBR), a new type of composite biofilm reactor developed by filling different fillers into the sequential batch reactor (SBR) reactor, has higher pollutant removal performance and simpler operation and maintenance. However, the phosphorus removal ability of the SBBR filling with conventional fillers is still limited and needs further improvement. In this study, we developed two new fillers, the self-fabricated filler A and B (SFA/SFB), and compared their source-separated urine treatment performance. Long-term treatment experimental results demonstrated that the SBBR systems with different fillers had good removal performance on the COD and TN in the influent, and the removal rate increased with the increasing HRT. However, only the SBBR system with the SFA showed excellent PO43--P and TP removal performance, with the removal rates being 83.7 ± 11.9% and 77.3 ± 13.7% when the HRT was 1 d. Microbial community analysis results indicated that no special bacteria with strong phosphorus removal ability were present on the surface of the SFA. Adsorption experimental results suggested that the SFA had better adsorption performance for phosphorus than the SFB, but it could not always have stronger phosphorus adsorption and removal performance during long-term operation due to the adsorption saturation. Through a series of characterizations such as SEM, XRD, and BET, it was found that the SFA had a looser structure due to the use of different binder and production processes, and the magnesium in the SFA gradually released and reacted with PO43- and NH4+ in the source-separated urine to form dittmarite and struvite, thus achieving efficient phosphorus removal. This study provides a feasible manner for the efficient treatment of source-separated urine using the SBBR system with self-fabricated fillers.


Assuntos
Magnésio , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Fósforo , Reatores Biológicos , Nitrogênio , Excipientes , Biofilmes , Esgotos/química
2.
Chemosphere ; 338: 139612, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482312

RESUMO

The ubiquitous heavy metal(loid)s (HMs) contamination has triggered great concern about food safety, while sequestration and separation of trace HMs from herbal extracts still calls for appropriate sorbent materials. In this work, gum acacia was modified by cysteine to form a cysteine-acacia intermolecular complex (Cys-GA complex) via facile mechanochemical synthesis, aiming at capturing multiple HMs simultaneously. Preliminary screening confirms the superiority of Cys-CA complex for both cationic and anionic HMs, and determines an optimum Cys/GA mass ratio of 9:1 to achieve high removal capacities for Pb(II) (938 mg g-1), Cd(II) (834 mg g-1), As(V) (496 mg g-1), and Cr(VI) (647 mg g-1) in simulated aqueous solution. The analysis on HMs-exhausted Cys-GA complex indicates that Pb(II), As(V), and Cr(VI) tend to be removed through chelation, electrostatic attraction, and reduction, while Cd(II) can only be chelated or adsorbed by electrostatic interaction. The batch experiments on commercial herbal (e.g. Panax ginseng, Glycine max, Sophora flavescens, Gardenia jasminoides, Cyclocarya paliurus, and Bamboo leaf) extracts indicate that Cys-GA complex can reduce HMs concentration to attain acceptable level that comply with International Organization for Standardization, with negligible negative effect on its active ingredients. This work provides a practical and convenient strategy to purify HMs-contaminated foods without introducing secondary pollution.


Assuntos
Cisteína , Metais Pesados , Goma Arábica , Cádmio , Chumbo , Metais Pesados/análise , Extratos Vegetais , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA