Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171269, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423323

RESUMO

Soil biogeochemical cycles are essential for regulating ecosystem functions and services. However, little knowledge has been revealed on microbe-driven biogeochemical processes and their coupling mechanisms in soil profiles. This study investigated the vertical distribution of soil functional composition and their contribution to carbon (C), nitrogen (N) and phosphorus (P) cycling in the humus horizons (A-horizons) and parent material horizons (C-horizons) in Udic and Ustic Isohumosols using shotgun sequencing. Results showed that the diversity and relative abundance of microbial functional genes was influenced by soil horizons and soil types. In A-horizons, the relative abundances of N mineralization and liable C decomposition genes were significantly greater, but the P cycle-related genes, recalcitrant C decomposition and denitrification genes were lower compared to C-horizons. While, Ustic Isohumosols had lower relative abundances of C decomposition genes but higher relative abundances of N mineralization and P cycling-related pathways compared to Udic Isohumosols. The network analysis revealed that C-horizons had more interactions and stronger stability of functional gene networks than in A-horizons. Importantly, our results provide new insights into the potential mechanisms for the coupling processes of soil biogeochemical cycles among C, N and P, which is mediated by specific microbial taxa. Soil pH and carbon quality index (CQI) were two sensitive indicators for regulating the relative abundances and the relationships of functional genes in biogeochemical cycles. This study contributes to a deeper understanding of the ecological functions of soil microorganisms, thus providing a theoretical basis for the exploration and utilization of soil microbial resources and the development of soil ecological control strategies.


Assuntos
Ecossistema , Solo , Solo/química , Microbiologia do Solo , Nitrogênio/análise , Carbono/metabolismo , Fósforo/metabolismo , Concentração de Íons de Hidrogênio
2.
Int J Med Mushrooms ; 25(12): 65-80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37947065

RESUMO

The optimal cultivation conditions and chemical components of Poria cocos fruiting bodies were examined by employing the single factor and response surface methods to screen for optimal conditions for artificial cultivation. The differences in chemical composition among the fruiting bodies, fermented mycelium, and sclerotia of P. cocos were compared using UV spectrophotometry and high-performance liquid chromatography (HPLC). The optimal growth conditions for P. cocos fruiting bodies were 28.5°C temperature, 60% light intensity, and 2.5 g pine sawdust, which resulted in the production of numerous basidiocarps and basidiospores under microscopic examination. Polysaccharides, triterpenoids, and other main active components of P. cocos were found in the fruiting bodies, sclerotia, and fermented mycelium. The triterpenoid components of the fruiting bodies were consistent with those of the sclerotia. The content of pachymic acid in the fruiting bodies was significantly higher than that in the sclerotia, with a value of 33.37 ± 0.1902 mg/g. These findings provide novel insights into the sexual breeding and comprehensive development and utilization of P. cocos.


Assuntos
Wolfiporia , Wolfiporia/química , Cromatografia Gasosa , Micélio/química , Cromatografia Líquida de Alta Pressão , Carpóforos
3.
Animals (Basel) ; 13(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37835631

RESUMO

Heat stress can cause intestinal inflammation, impaired barrier integrity, and decreased immunity in poultry. While zinc is known to mitigate the adverse effects of heat stress, how the dietary supplementation of different sources and levels of it can improve the heat stress capacity of Chinese landraces remains unclear. This study investigated Xueshan chickens, which are an important local breed in China. The effects of different levels of ZnS and Zn-Prot M on their intestinal immune function under heat stress were compared. We found that different levels of ZnS and Zn-Prot M could effectively reduce the secretion level of IL-6 in the serum, and 60 mg/kg was optimal. Compared with ZnS, Zn-Prot M significantly increased duodenal villus height and VH/CD ratio, thus Zn-Prot M was more effective than ZnS. Both ZnS and Zn-Prot M significantly down-regulated TNF-α, IL-1ß, and MyD88 in 102-day-old duodenum, and IL-1ß, IL-6, and NFKBIA in jejunum and ileum at 74, 88, and 102 days old, with 60 mg/kg Zn-Prot M determined as optimal. In conclusion, our study demonstrates that Zn-Prot M is superior to ZnS in improving intestinal immunity in Xueshan chickens, and 60 mg/kg is the optimal addition dose.

4.
BMC Genomics ; 24(1): 477, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612620

RESUMO

BACKGROUND: Numerous circular RNAs (circRNAs) have been recently identified in porcine tissues and cell types. Nevertheless, their significance in porcine spleen development is yet unelucidated. Herein, we reported an extensive overlook of circRNA expression profile during spleen development in Meishan pigs. RESULTS: Overall, 39,641 circRNAs were identified from 6,914 host genes. Among them, many circRNAs are up- or down-regulated at different time points of pig spleen development. Using WGCNA analysis, we revealed two essential modules for protein-coding genes and circRNAs. Subsequent correlation analysis revealed 67 circRNAs/co-expressed genes that participated in immnue-associated networks. Furthermore, a competing endogenous RNA (ceRNA) network analysis of circRNAs revealed that 12 circRNAs modulated CD226, MBD2, SAMD3, SIT1, SRP14, SYTL3 gene expressions via acting as miRNA sponges. Moreover, the circRNA_21767/miR-202-3p axis regulated SIT1 expression in a ceRNA manner, which is critical for the immune-based regulation of spleen development in Meishan pigs. CONCLUSIONS: Overall, our results demonstrated that the circRNAs were differentially expressed during different stages of porcine spleen development, meanwhile the circRNAs interacted with immune-related genes in a ceRNA-based fashion. Moreover, we presented biomedical researchers with RNAseqTools, a user-friendly and powerful software for the visualization of transcriptome profile data.


Assuntos
MicroRNAs , RNA Circular , Baço , Suínos , Animais , Proteínas de Ligação a DNA , MicroRNAs/genética , RNA Circular/genética , Baço/crescimento & desenvolvimento , Baço/fisiologia , Suínos/genética , Estudo de Associação Genômica Ampla , China
5.
Sci Total Environ ; 899: 165580, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467990

RESUMO

Elevated CO2 and temperature likely alter photosynthetic carbon inputs to soils, which may stimulate soil microbial activity to accelerate the decomposition of soil organic carbon (SOC), liberating more phosphorus (P) into the soil solution. However, this hypothesis on the association of SOC decomposition and P transformation in the plant rhizosphere requires robust soil biochemical evidence, which is critical to nutrient management for the mitigation of soil quality against climate change. This study investigated the microbial functional genes relevant to P mineralization together with priming processes of SOC in the rhizosphere of soybean grown under climate change. Soybean plants were grown under elevated CO2 (eCO2, 700 ppm) combined with warming (+ 2 °C above ambient temperature) in open-top chambers. Photosynthetic carbon flow in the plant-soil continuum was traced with 13CO2 labeling. The eCO2 plus warming treatment increased the primed carbon (C) by 43 % but decreased the NaHCO3-extratable organic P by 33 %. Furthermore, NaHCO3-Po was negatively correlated with phosphatase activity and microbial biomass C. Elevated CO2 increased the abundances of C degradation genes, such as abfA and ManB, and P mineralization genes, such as gcd, phoC and phnK. The results suggested that increased photosynthetic carbon inputs to the rhizosphere of plants under eCO2 plus warming stimulated the microbial population and metabolic functions of both SOC and organic P mineralization. There is a positive relationship between the rhizosphere priming effect and P mineralization. The response of microorganisms to plant-C flow is decisive for coupled C and P cycles, which are likely accelerated under climate change.


Assuntos
Glycine max , Rizosfera , Glycine max/metabolismo , Carbono/metabolismo , Mudança Climática , Fósforo/metabolismo , Dióxido de Carbono/metabolismo , Solo/química , Plantas/metabolismo , Microbiologia do Solo
6.
Med Oncol ; 40(7): 211, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347364

RESUMO

Traditional Chinese medicine (TCM) has been widely used for cancer treatment. Identification of anti-cancer targets of TCM is the first and principal step in discovering molecular mechanisms of TCM as well as obtaining novel targets for cancer therapy. In this study, glycogen phosphorylase L (PYGL) was identified as one of the targeted proteins for several TCMs and was upregulated in various cancer types. The expression level of PYGL was positively correlated with the stage of lung cancer and the poor prognosis of patients. Meanwhile, knockdown of PYGL significantly inhibited proliferation and migration in lung cancer cells. In addition, PYGL was associated with spindle, kinetochore, and microtubule, the cellular components that are closely related to mitosis, in lung cancer. Moreover, PYGL was more susceptible to be upregulated by 144 mutated genes. Taken together, PYGL is a potential target for lung cancer treatment and its molecular mechanism probably influences the mitotic function of cells by regulating energy metabolism.


Assuntos
Glicogênio Fosforilase , Neoplasias Pulmonares , Humanos , Glicogênio Fosforilase/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética
7.
Diabetes Spectr ; 36(2): 161-170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193209

RESUMO

Objective: To assess whether an electronic health record (EHR)-based diabetes intensification tool can improve the rate of A1C goal attainment among patients with type 2 diabetes and an A1C ≥8%. Methods: An EHR-based tool was developed and sequentially implemented in a large, integrated health system using a four-phase, stepped-wedge design (single pilot site [phase 1] and then three practice site clusters [phases 2-4]; 3 months/phase), with full implementation during phase 4. A1C outcomes, tool usage, and treatment intensification metrics were compared retrospectively at implementation (IMP) sites versus nonimplementation (non-IMP) sites with sites matched on patient population characteristics using overlap propensity score weighting. Results: Overall, tool utilization was low among patient encounters at IMP sites (1,122 of 11,549 [9.7%]). During phases 1-3, the proportions of patients achieving the A1C goal (<8%) were not significantly improved between IMP and non-IMP sites at 6 months (range 42.9-46.5%) or 12 months (range 46.5-53.1%). In phase 3, fewer patients at IMP sites versus non-IMP sites achieved the goal at 12 months (46.7 vs. 52.3%, P = 0.02). In phases 1-3, mean changes in A1C from baseline to 6 and 12 months (range -0.88 to -1.08%) were not significantly different between IMP and non-IMP sites. Times to intensification were similar between IMP and non-IMP sites. Conclusion: Utilization of a diabetes intensification tool was low and did not influence rates of A1C goal attainment or time to treatment intensification. The low level of tool adoption is itself an important finding highlighting the problem of therapeutic inertia in clinical practice. Testing additional strategies to better incorporate, increase acceptance of, and improve proficiency with EHR-based intensification tools is warranted.

8.
BMC Complement Med Ther ; 23(1): 106, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020229

RESUMO

BACKGROUND: Streptococcus mutans is a well-known oral pathogen that plays a critical role in the development of dental caries. Many studies have been directed to discover the chemical compounds present in natural products to inhibit the growth and biofilm formation activity of S. mutans. Thymus essential oils exhibit good inhibition on the growth and pathogenesis of S. mutans. However, details about the active compounds in Thymus essential oil and the inhibition mechanism still remain unclear. The aim of this study was to investigate the antimicrobial activity of 6 Thymus species (Three samples of Thymus vulgaris, two samples of Thymus zygis, and one sample of Thymus satureioides essential oils) on S. mutans, to identify the potential active components, and to reveal the underlying mechanism. METHODS: The composition of Thymus essential oils was analyzed by gas chromatography-mass spectrometry. And its antibacterial effect was evaluated based on the bacterial growth, acid production, biofilm formation and genetic expression of virulence factors by S. mutans. Potential active components of the Thymus essential oil were identified using molecular docking and correlation analysis. RESULTS: GC-MS analysis showed that the major components in the 6 Spain Thymus essential oils were linalool, α-terpineol, p-cymene, thymol and carvacrol. MIC and MBC analysis showed that 3 Thymus essential oils showed very sensitive antimicrobial activity, and were chosen for further analysis. The 3 Thymus essential oil exhibited a significant inhibitory effect on acid production, adherence and biofilm formation of S. mutans and the expression of virulence genes, such as brpA, gbpB, gtfB, gtfC, gtfD, vicR, spaP and relA. Correlation analysis showed that phenolic components, such as carvacrol and thymol, were positively related to DIZ value, which suggests that they are the potential antimicrobial components. Molecular docking between the Thymus essential oil components and virulence proteins also found that carvacrol and thymol exhibited strong binding affinity with functional domains of virulence genes. CONCLUSIONS: Thymus essential oil showed significant inhibition against the growth and pathogenesis of S. mutans depending on their composition and concentration. And phenolic compounds, such as carvacrol and thymol, are the major active components. Thymus essential oil could be used in oral healthcare products as a potential anti-caries ingredient.


Assuntos
Anti-Infecciosos , Cárie Dentária , Óleos Voláteis , Thymus (Planta) , Óleos Voláteis/farmacologia , Streptococcus mutans , Timol/farmacologia , Thymus (Planta)/química , Cariostáticos/farmacologia , Simulação de Acoplamento Molecular , Espanha , Óleos de Plantas/farmacologia , Anti-Infecciosos/farmacologia
9.
Phytomedicine ; 113: 154718, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36854203

RESUMO

BACKGROUND: Ophiopogon japonicus (Thunb.) Ker Gawl., a well-known Chinese herb, has been used in traditional Chinese medicine for thousands of years. Extensive in vitro and in vivo studies have shown that O. japonicus and its active compounds exhibit potential anticancer effects in a variety of cancer cells in vitro and suppress tumor growth and metastasis without causing serious toxicity in vivo. PURPOSE: This review aims to systemically summarize and discuss the anticancer effects and the underlying mechanisms of O. japonicus extracts and its active compounds. METHODS: The review is prepared following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Various scientific databases including Web of Science, PubMed, Scopus, and Chinese National Knowledge Infrastructure were searched using the keywords: Ophiopogon japonicus, tumor, cancer, carcinoma, content, pharmacokinetics, and toxicity. RESULTS: O. japonicus extracts and the active compounds, such as ruscogenin-1-O-[ß-d-glucopyranosyl(1→2)][ß-d-xylopyranosyl(1→3)]-ß-d-fucopyranoside (DT-13), ophiopogonin B, and ophiopogonin D, exert potential anticancer effects, including the induction of cell cycle arrest, activation of apoptosis and autophagy, and inhibition of metastasis and angiogenesis. In addition, the mechanisms underlying these effects, as well as the pharmacokinetics, toxicity and clinical utility of O. japonicus extracts and active compounds are discussed. Furthermore, this review highlights the research and application prospects of these compounds in immunotherapy and combination chemotherapy. CONCLUSIONS: The traditional herb O. japonicus and its phytochemicals could be safe and reliable anticancer drug candidates, alone or in combination with chemotherapeutic drugs. We hope that this review, which highlights the anticancer properties of O. japonicus, will contribute to drug optimization, therapeutic development, and future studies on cancer therapies based on this medicinal plant.


Assuntos
Medicamentos de Ervas Chinesas , Ophiopogon , Medicamentos de Ervas Chinesas/química , Ophiopogon/química , Medicina Tradicional Chinesa , Compostos Fitoquímicos
10.
Molecules ; 28(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838966

RESUMO

Recently zero-dimensional (0-D) inorganic-organic metal halides (IOMHs) have become a promising class of optoelectronic materials. Herein, we report a new photoluminescent (PL) 0-D antimony(III)-based IOMH single crystal, namely [H2BPZ][SbCl5]·H2O (BPZ = benzylpiperazine). Photophysical characterizations indicate that [H2BPZ][SbCl5]·H2O exhibits singlet/triplet dual-band emission. Density functional theory (DFT) calculations suggest that [H2BPZ][SbCl5]·H2O has the large energy difference between singlet and triplet states, which might induce the dual emission in this compound. Temperature-dependent PL spectra analyses suggest the soft lattice and strong electron-phonon coupling in this compound. Thermogravimetric analysis shows that the water molecules in the lattice of the title crystal could be removed by thermal treatment, giving rise to a dehydrated phase of [H2BPZ][SbCl5]. Interestingly, such structural transformation is accompanied by a reversible PL emission transition between red light (630 nm, dehydrated phase) and yellow light (595 nm, water-containing phase). When being exposed to an environment with 77% relative humidity, the emission color of the dehydrated phase was able to change from red to yellow within 20 s, and the red emission could be restored after reheating. The red to yellow emission switching could be achieved in acetone with water concentration as low as 0.2 vol%. The reversible PL transition phenomenon makes [H2BPZ][SbCl5]·H2O a potential material for luminescent water-sensing.


Assuntos
Temperatura Alta , Hipertermia Induzida , Antimônio , Cloretos , Luminescência , Halogênios
11.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770712

RESUMO

The tuberous root of Ophiopogon japonicus (Thunb.) Ker-Gawl. is a well-known Chinese medicine also called Maidong (MD) in Chinese. It could be divided into "Chuanmaidong" (CMD) and "Zhemaidong" (ZMD), according to the geographic origins. Meanwhile, the root of Liriope spicata (Thunb.) Lour. var. prolifera Y. T. Ma (SMD) is occasionally used as a substitute for MD in the market. In this study, a reliable pressurized liquid extraction and HPLC-DAD-ELSD method was developed for the simultaneous determination of nine chemical components, including four steroidal saponins (ophiopojaponin C, ophiopogonin D, liriopesides B and ophiopogonin D'), four homoisoflavonoids (methylophiopogonone A, methylophiopogonone B, methylophiopogonanone A and methylophiopogonanone B) and one sapogenin (ruscogenin) in CMD, ZMD and SMD. The method was validated in terms of linearity, sensitivity, precision, repeatability and accuracy, and then applied to the real samples from different origins. The results indicated that there were significant differences in the contents of the investigated compounds in CMD, ZMD and SMD. Ruscogenin was not detected in all the samples, and liriopesides B was only found in SMD samples. CMD contained higher ophiopogonin D and ophiopogonin D', while the other compounds were more abundant in ZMD. Moreover, the anticancer effects of the herbal extracts and selected components against A2780 human ovarian cancer cells were also compared. CMD and ZMD showed similar cytotoxic effects, which were stronger than those of SMD. The effects of MD may be due to the significant anticancer potential of ophiopognin D' and homoisoflavonoids. These results suggested that there were great differences in the chemical composition and pharmacological activity among CMD, ZMD and SMD; thus, their origins should be carefully considered in clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Ophiopogon , Neoplasias Ovarianas , Saponinas , Compostos de Espiro , Humanos , Feminino , Ophiopogon/química , Linhagem Celular Tumoral , Saponinas/farmacologia , Saponinas/química , Medicamentos de Ervas Chinesas/química
12.
Genome ; 66(4): 80-90, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36763968

RESUMO

Polygonatum cyrtonema Hua is a traditional Chinese herb medicine, and it is widely distributed in China. The intrageneric taxonomy and phylogenetic relationships within Polygonatum have long been controversial due to their morphological similarity and lacking special DNA barcodes. In this paper, the complete chloroplast genome is a relatively conserved quadripartite structure including a large single copy region of 84 711 bp, a small single copy region of 18 210 bp, and a pair of inverted repeats region of 26 142 bp. A total of 342 simple sequence repeats were identified, and most of them were found to be composed of A/T, including 126 mono-nucleotides and 179 di-nucleotides. Nucleotide diversity was analyzed and eight highly variable regions (psbl∼trnT-CGU, atpF∼atpH, trnT-GGU∼psbD, psaJ∼rps20, trnL-UAG∼ndhD, ndhG∼ndhl, ndhA, and rpl32∼ccsA) were identified as potential molecular markers. Phylogenetic analysis based on the whole chloroplast genome showed that P. cyrtonema, within the family Asparagaceae, is closely related to Polygonatum sibiricum and Polygonatum kingianum. The sequence matK, trnT-GGU & ccsA, and ndhG∼ndhA were identified as three DNA barcodes. The assembly and comparative analysis of P. cyrtonema complete chloroplast genome will provide essential molecular information about the evolution and molecular biology for further study.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais , Polygonatum , Filogenia , Polygonatum/genética , Plantas Medicinais/genética , China
13.
J Pharm Biomed Anal ; 226: 115238, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36645985

RESUMO

Ormosia hosiei Hemsl. et Wils. is an economical and medicinal plant, increasingly cultivated in China; however, its branches and leaves are often pruned as waste. This is the first study focused on the phytochemical profiles and antioxidant, anti-α-glucosidase, anti-tyrosinase, and anti-neuroinflammatory activities of the branches and leaves of O. hosiei. Herein, thirty-seven characteristic compounds were identified by UPLC-MS/MS and twelve were detected for the first time in O. hosiei. Twenty-seven phenolics were further quantified and significant differences in phenolic compositions between the branches and leaves of O. hosiei were observed. The ethanol extracts exhibited promising antioxidant, anti-α-glucosidase, anti-tyrosinase, and anti-neuroinflammatory effects, and the bioactivities significantly correlated with total phenolic content and twelve individual phenolics. Naringin, genistein, vitexin, vitexin-2-O-rhamnoside, syringaresinol and syringaresinol-4-O-ß-D-glucopyranoside can be considered potential quality markers of O. hosiei. Our results provided solid evidence that the branches and leaves of O. hosiei deserve more attention and exploitation, considering the potential to be developed as functional foods or herbal medicines.


Assuntos
Extratos Vegetais , Plantas Medicinais , Extratos Vegetais/química , Antioxidantes/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Compostos Fitoquímicos/análise , Fenóis/análise , Glucosidases , Folhas de Planta/química
14.
J Adv Res ; 46: 149-158, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35777727

RESUMO

INTRODUCTION: The anti-cancer effect of high concentrations of ascorbic acid (AA) has been well established while its underlying mechanisms remain unclear. The association between iron and AA has attracted great attention but was still controversial due to the complicated roles of iron in tumors. OBJECTIVES: Our study aims to explore the anti-cancer mechanisms of AA and the interaction between AA and iron in cancer. METHODS: The MTT and ATP assays were used to evaluate the cytotoxicity of AA. Reactive oxygen species (ROS) generation, calcium (Ca2+), and lipid peroxidation were monitored with flow cytometry. Mitochondrial dysfunction was assessed by mitochondrial membrane potential (MMP) detection with JC-1 or tetramethylrhodamine methyl ester (TMRM) staining. Mitochondrial swelling was monitored with MitoTracker Green probe. FeSO4 (Fe2+), FeCl3 (Fe3+), Ferric ammonium citrate (Fe3+), hemin chloride (Fe3+) were used as an iron donor to investigate the effects of iron on AA's anti-tumor activity. The in vivo effects of AA and iron were analyzed in xenograft zebrafish and allograft mouse models. RESULTS: High concentrations of AA exhibited cytotoxicity in a panel of cancer cells. AA triggered ROS-dependent non-apoptotic cell death. AA-induced cell death was essentially mediated by the accumulated intracellular Ca2+, which was partly originated from endoplasmic reticulum (ER). Surprisingly, exogenous iron could significantly reverse AA-induced ROS generation, Ca2+ overloaded, and cell death. Especially, the iron supplements significantly impaired the in vivo anti-tumor activity of AA. CONCLUSIONS: Our study elucidated the protective roles of iron in ROS/Ca2+ mediated necrosis triggered by AA both in vitro and in vivo, which might shed novel insight into the anti-cancer mechanisms and provide clinical application strategies for AA in cancer treatment.


Assuntos
Neoplasias , Peixe-Zebra , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra/metabolismo , Ácido Ascórbico/farmacologia , Ferro , Neoplasias/tratamento farmacológico
15.
Chin J Integr Med ; 28(11): 983-991, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35997859

RESUMO

OBJECTIVE: To examine the effect of Shenmai Injection (SMJ) on ferroptosis during myocardial ischemia reperfusion (I/R) injury in rats and the underlying mechanism. METHODS: A total of 120 SPF-grade adult male SD rats, weighing 220-250 g were randomly divided into different groups according to a random number table. Myocardial I/R model was established by occluding the left anterior descending artery for 30 min followed by 120 min of reperfusion. SMJ was injected intraperitoneally at the onset of 120 min of reperfusion, and erastin (an agonist of ferroptosis), ferrostatin-1 (Fer-1, an inhibitor of ferroptosis) and ML385 (an inhibitor of nuclear factor erythroid-2 related factor 2 (Nrf2)) were administered intraperitoneally separately 30 min before myocardial ischemia as different pretreatments. Cardiac function before ischemia, after ischemia and after reperfusion was analysed. Pathological changes in the myocardium and the ultrastructure of cardiomyocytes were observed, and the myocardial infarction area was measured. Additionally, the concentration of Fe2+ in heart tissues and the levels of creatine kinase-MB (CK-MB), troponin I (cTnl), malondialdehyde (MDA) and superoxide dismutase (SOD) in serum were measured using assay kits, and the expressions of Nrf2, glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4 (ACSL4) were examined by Western blot. RESULTS: Compared with the sham group, I/R significantly injured heart tissues, as evidenced by the disordered, ruptured and oedematous myocardial fibres; the increases in infarct size, serum CK-MB, cTnI and MDA levels, and myocardial Fe2+ concentrations; and the decreases in SOD activity (P<0.05). These results were accompanied by ultrastructural alterations to the mitochondria, increased expression of ACSL4 and inhibited the activation of Nrf2/GPX4 signalling (P<0.05). Compared with I/R group, pretreatment with 9 mL/kg SMJ and 2 mg/kg Fer-1 significantly reduced myocardial I/R injury, Fe2+ concentrations and ACSL4 expression and attenuated mitochondrial impairment, while 14 mg/kg erastin exacerbated myocardial I/R injury (P<0.05). In addition, cardioprotection provided by 9 mL/kg SMJ was completely reversed by ML385, as evidenced by the increased myocardial infarct size, CK-MB, cTnI, MDA and Fe2+ concentrations, and the decreased SOD activity (P<0.05). CONCLUSIONS: Ferroptosis is involved in myocardial I/R injury. Pretreatment with SMJ alleviated myocardial I/R injury by activating Nrf2/GPX4 signalling-mediated ferroptosis, thereby providing a strategy for the prevention and treatment of ischemic heart diseases.


Assuntos
Ferroptose , Infarto do Miocárdio , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Animais , Masculino , Ratos , Coenzima A , Creatina Quinase , Ligases , Malondialdeído , Infarto do Miocárdio/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Troponina I
16.
Biochem Pharmacol ; 197: 114940, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35120895

RESUMO

Programmed death ligand-1 (PD-L1) and indoleamine 2, 3-dioxygenase 1 (IDO1) are immune checkpoints induced by interferon-γ (IFN-γ) in the tumor microenvironment, leading to immune escape of tumors. Myricetin (MY) is a flavonoid distributed in many edible and medicinal plants. In this study, MY was identified to inhibit IFN-γ-induced PD-L1 expression in human lung cancer cells. It also reduced the expression of IDO1 and the production of kynurenine which is the product catalyzed by IDO1, while didn't show obvious effect on the expression of major histocompatibility complex-I (MHC-I), a crucial molecule for antigen presentation. In addition, the function of T cells was evaluated using a co-culture system consist of lung cancer cells and the Jurkat-PD-1 T cell line overexpressing PD-1. MY restored the survival, proliferation, CD69 expression and interleukin-2 (IL-2) secretion of Jurkat-PD-1 T cells suppressed by IFN-γ-treated lung cancer cells. Mechanistically, IFN-γ up-regulated PD-L1 and IDO1 at the transcriptional level through the JAK-STAT-IRF1 axis, which was targeted and inhibited by MY. Together, our research revealed a new mechanism of MY mediated anti-tumor activity and highlighted the potential implications of MY in tumor immunotherapy.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Flavonoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Interferon gama/farmacologia , Neoplasias Pulmonares/metabolismo , Células A549 , Antígeno B7-H1/biossíntese , Antígeno B7-H1/genética , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/fisiologia , Células HCT116 , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Células Jurkat , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia
17.
Sci Total Environ ; 823: 153558, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35124062

RESUMO

Climate change is likely to influence the reservoir of soil phosphorus (P) as plants adaptably respond to climate change in the perspective of P acquisition capability via root proliferation and mediating biochemical properties in the rhizosphere to access various soil P fractions. It is particularly important in cropping soils where P fertilizer plus soil P is required to synchronize crop P demand for the production sustainability under climate change. However, few studies have examined the effect of CO2 and temperature co-elevation on plant P acquisition, P fractions and relevant functional genes in the rhizosphere of different crops. Thus, the present study investigated the effect of elevated CO2 and warming on P uptake of soybean and rice grown in Mollisols, and soil P fractions and relevant biochemical properties and microbial functions in the rhizosphere with or without P application. Open-top chambers were used to achieve elevated CO2 of 700 ppm combined with warming (+ 2 °C above ambient temperature). CO2 and temperature co-elevation increased P uptake in soybean by 23% and 28% under the no-P and P application treatments, respectively; and in rice, by 34% and 13%, respectively. CO2 and temperature co-elevation depleted organic P in the rhizosphere of soybean, but increased in the rhizosphere of rice. The phosphatase activity negatively correlated with organic P in the highland soil while positively in the paddy soil. The P mineralization likely occurs in soybean-grown soils under climate change, while the P immobilization in paddy soils. CO2 and temperature co-elevation increased the copy numbers of P functional genes including phoD, phoC, pstS and phnX, in soils with P application. These results indicate that the P application would be requested to satisfy the increased P demand in soybean under climate change, but not in rice in paddy soils where soil P availability is sufficient. Therefore, elevated CO2 and temperature facilitated the crop P uptake via biochemical and microbial pathways, and P functional genes played an essential role in the conversion of P.


Assuntos
Oryza , Rizosfera , Dióxido de Carbono/análise , Oryza/metabolismo , Fósforo , Solo/química , Microbiologia do Solo , Glycine max/metabolismo , Temperatura
18.
Microbiome ; 10(1): 12, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35074003

RESUMO

BACKGROUND: Understanding how elevated atmospheric CO2 (eCO2) impacts on phosphorus (P) transformation in plant rhizosphere is critical for maintaining ecological sustainability in response to climate change, especially in agricultural systems where soil P availability is low. METHODS: This study used rhizoboxes to physically separate rhizosphere regions (plant root-soil interface) into 1.5-mm segments. Wheat plants were grown in rhizoboxes under eCO2 (800 ppm) and ambient CO2 (400 ppm) in two farming soils, Chromosol and Vertosol, supplemented with phytate (organic P). Photosynthetic carbon flow in the plant-soil continuum was traced with 13CO2 labeling. Amplicon sequencing was performed on the rhizosphere-associated microbial community in the root-growth zone, and 1.5 mm and 3 mm away from the root. RESULTS: Elevated CO2 accelerated the mineralization of phytate in the rhizosphere zones, which corresponded with increases in plant-derived 13C enrichment and the relative abundances of discreet phylogenetic clades containing Bacteroidetes and Gemmatimonadetes in the bacterial community, and Funneliformis affiliated to arbuscular mycorrhizas in the fungal community. Although the amplicon sequence variants (ASVs) associated the stimulation of phytate mineralization under eCO2 differed between the two soils, these ASVs belonged to the same phyla associated with phytase and phosphatase production. The symbiotic mycorrhizas in the rhizosphere of wheat under eCO2 benefited from increased plant C supply and increased P access from soil. Further supportive evidence was the eCO2-induced increase in the genetic pool expressing the pentose phosphate pathway, which is the central pathway for biosynthesis of RNA/DNA precursors. CONCLUSIONS: The results suggested that an increased belowground carbon flow under eCO2 stimulated bacterial growth, changing community composition in favor of phylotypes capable of degrading aromatic P compounds. It is proposed that energy investments by bacteria into anabolic processes increase under eCO2 to level microbial P-use efficiencies and that synergies with symbiotic mycorrhizas further enhance the competition for and mineralization of organic P. Video Abstract.


Assuntos
Microbiota , Rizosfera , Dióxido de Carbono/metabolismo , Microbiota/genética , Fósforo , Filogenia , Microbiologia do Solo , Triticum/metabolismo
19.
Curr Cancer Drug Targets ; 22(2): 142-152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35034596

RESUMO

BACKGROUND: Shenling Baizhu Powder (SBP), a famous Traditional Chinese Medicine (TCM) formulation, has been widely used in the adjuvant treatment of cancers, including breast cancer. This study aims to identify potential new targets for breast cancer treatment based on the network pharmacology of SBP. METHODS: By analyzing the relationship between herbs and target proteins, potential targets of multiple herbs in SBP were identified by network pharmacology analysis. Besides, by comparing the data of breast cancer tissue with normal tissue, upregulated genes in two breast cancer expression profiles were found. Thereafter, the expression level and prognosis of activator of heat shock protein 90 (HSP90) ATPase activity 1 (AHSA1) were further analyzed in breast cancer by bioinformatics analysis, and the network module of AHSA1 binding protein was constructed. Furthermore, the effect of knocking down AHSA1 on the proliferation, migration, and invasion of breast cancer cells was verified by MTT, clone formation assay, and transwell assay. RESULTS: Vascular endothelial growth factor A (VEGFA), intercellular adhesion molecule 1 (ICAM1), chemokine (C-X-C motif) ligand 8 (CXCL8), AHSA1, and serpin family E member 1 (SERPINE1) were associated with multiple herbs in SBP. AHSA1 was remarkably upregulated in breast cancer tissues and positively correlated with poor overall survival and disease metastasis- free survival. Furthermore, knockdown of AHSA1 significantly inhibited the migration and invasion in MCF-7 and MDA-MB-231 breast cancer cells but had no obvious effect on proliferation. In addition, among the proteins that bind to AHSAl, the network composed of proteasome, chaperonin, and heat shock proteins is closely connected, and these proteins are associated with poor prognosis in a variety of cancers. CONCLUSION: AHSA1 is positively correlated with breast cancer progression and might act as a novel therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama , Adenosina Trifosfatases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Biologia Computacional , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Chaperonas Moleculares/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
20.
Crit Rev Food Sci Nutr ; 62(7): 1752-1764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33191773

RESUMO

The need for protein in human nutrition is rapidly increasing because of the increasing world population and consumer preference for high-protein foods. Plant proteins are gaining attention as sustainable means of meeting the global protein need due to their lower carbon footprint. Nonetheless, the food industry has neglected or underutilized many plant proteins, including buckwheat protein. Buckwheat is a pseudocereal and its groats contain beneficial components such as proteins, dietary fiber, vitamins, and bioactive polyphenols. The protein quality of buckwheat seeds varies between the tartary and common buckwheat types; both are gluten-free and contain considerable amount of indispensable amino acids. This review provides a detailed discussion on the profile, amino acid composition, digestibility, allergenicity, functional properties, and bioactivity of buckwheat proteins. Prospects of processing buckwheat for improving protein digestibility and deactivating allergenic epitopes were also discussed. Based on the literature, buckwheat protein has a tremendous potential for utilization in structuring food products and developing peptide-based functional foods for disease prevention. Future research should develop new processing technologies for further improvement of the quality and functional properties of buckwheat protein in order to facilitate its utilization as an alternative plant-based protein toward meeting the global protein supply.


Assuntos
Fagopyrum , Fagopyrum/química , Indústria Alimentícia , Humanos , Proteínas de Plantas/química , Polifenóis/análise , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA