RESUMO
BACKGROUND: Cigarette smoke impairs mucociliary clearance via mechanisms such as inflammatory response and oxidative injury, which in turn induces various respiratory diseases. Naringenin, a naturally occurring flavonoid in grapes and grapefruit, has exhibited pharmacological properties such as anti-inflammatory, expectorant, and antioxidant properties. However, it is still unclear whether naringenin protects airway cilia from injury caused by cigarette smoke. PURPOSE: This study aimed to investigate the effect of naringenin on cigarette smoke extract (CSE)-induced structural and functional abnormalities in airway cilia and highlight the potential regulatory mechanism. METHODS: Initially, network pharmacology was used to predict the mechanism of action of naringenin in ciliary disease. Next, HE staining, immunofluorescence, TEM, qRT-PCR, western blot, and ELISA were performed to assess the effects of naringenin on airway cilia in tracheal rings and air-liquid interface (ALI) cultures of Sprague Dawley rats after co-exposure to CSE (10% or 20%) and naringenin (0, 25, 50, 100 µM) for 24 h. Finally, transcriptomics and molecular biotechnology methods were conducted to elucidate the mechanism by which naringenin protected cilia from CSE-induced damage in ALI cultures. RESULTS: The targets of ciliary diseases regulated by naringenin were significantly enriched in inflammation and oxidative stress pathways. Also, the CSE decreased the number of cilia in the tracheal rings and ALI cultures and reduced the ciliary beat frequency (CBF). However, naringenin prevented CSE-induced cilia damage via mechanisms such as the downregulation of cilia-related genes (e.g., RFX3, DNAI1, DNAH5, IFT88) and ciliary marker proteins such as DNAI2, FOXJ1, and ß-tubulin IV, the upregulation of inflammatory factors (e.g., IL-6, IL-8, IL-13), ROS and MDA. IL-17 signaling pathway might be involved in the protective effect of naringenin on airway cilia. Additionally, the cAMP signaling pathway might also be related to the enhancement of CBF by naringenin. CONCLUSION: In this study, we first found that naringenin reduces CSE-induced structural disruption of airway cilia in part via modulation of the IL-17 signaling pathway. Furthermore, we also found that naringenin enhances CBF by activating the cAMP signaling pathway. This is the first report to reveal the beneficial effects of naringenin on airway cilia and the potential underlying mechanisms.
Assuntos
Fumar Cigarros , Cílios , Flavanonas , Animais , Ratos , Ratos Sprague-Dawley , Cílios/metabolismo , Interleucina-17/metabolismo , Células EpiteliaisRESUMO
BACKGROUND: Baihu-Guizhi decoction (BHGZD) is a well-documented traditional Chinese Medicine (TCM) prescription that has been extensively applied to treating rheumatoid arthritis. Despite of its beneficial outcomes, the chemical constituents of BHGZD have not been fully portrayed and the in vivo absorption, distribution, metabolism, and excretion (ADME) patterns of absorbed components have never been described. METHODS: Characterization of absorbed components and in vivo biotransformation profiling of these feature compounds were based on the ultra-fast liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UFLC-Q-TOF-MS/MS). Furthermore, the ultra-high-performance liquid chromatography tandem ion trap quadrupole mass spectrometry (UHPLC-Q-TRAP-MS/MS) system were performed to investigate the pharmacokinetics of active ingredients from BHGZD. RESULTS: In this study, we have identified and tentatively characterized 18 feature absorbed prototype and 15 metabolites of BHGZD in rat serum and the in vivo transformation pathways of these absorbed constituents were proposed. Besides, we have established novel quantitative methodology of five crucial components of BHGZD and have monitored the pharmacokinetic behaviors of these constituents spontaneously in rat serum after BHGZD gavage. After rats received two ways of BHGZD gavage, the pharmacokinetic behaviors of each compound exhibited relatively similar behaviors, as evidenced by similar curve track as well as relatively close time to reach maximum concentration (Tmax) and half washout time (T1/2). Whereas the maximum plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) values of five analytes with multiple dosage were a bit higher than single dosage. CONCLUSION: This study added knowledge into the material basis and bio-transformation patterns of BHGZD in vivo, which would be of great value for exploring pharmacological effects and mechanism of BHGZD.