Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Rep Med ; 4(5): 101026, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37137303

RESUMO

Recurrent spontaneous miscarriage (RSM) affects 1%-2% of fertile women worldwide and poses a risk of future pregnancy complications. Increasing evidence has indicated that defective endometrial stromal decidualization is a potential cause of RSM. Here, we perform liquid chromatography with mass spectrometry (LC-MS)-based metabolite profiling in human endometrial stromal cells (ESCs) and differentiated ESCs (DESCs) and find that accumulated α-ketoglutarate (αKG) derived from activated glutaminolysis contributes to maternal decidualization. Contrarily, ESCs obtained from patients with RSM show glutaminolysis blockade and aberrant decidualization. We further find that enhanced Gln-Glu-αKG flux decreases histone methylation and supports ATP production during decidualization. In vivo, feeding mice a Glu-free diet leads to a reduction of αKG, impaired decidualization, and an increase of fetal loss rate. Isotopic tracing approaches demonstrate Gln-dependent oxidative metabolism as a prevalent direction during decidualization. Our results demonstrate an essential prerequisite of Gln-Glu-αKG flux to regulate maternal decidualization, suggesting αKG supplementation as a putative strategy to rectify deficient decidualization in patients with RSM.


Assuntos
Aborto Espontâneo , Decídua , Gravidez , Humanos , Feminino , Camundongos , Animais , Decídua/metabolismo , Ácidos Cetoglutáricos/metabolismo , Aborto Espontâneo/metabolismo , Células Cultivadas , Endométrio/metabolismo
2.
Plant Sci ; 324: 111416, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35995109

RESUMO

The source and sink balance determines crop growth, which is largely modulated by nitrogen (N) supplies. The use of mixed ammonium and nitrate as N supply can improve plant growth, however mechanisms involving the coordination of carbon and N metabolism are not well understood. Here, we investigated potato plants responding to N forms and confirmed that, compared with sole nitrate supply, mixed N (75 %/25 % nitrate/ammonium) enhanced leaf area, photosynthetic activity and N metabolism and accordingly resulted in outgrowth of stolons and shoot axillary buds. Cytokinin transportation in xylem sap and local cytokinin synthesis in leaves were up-regulated in mixed-N-treated potato plants relative to sole nitrate provision; and exogenous application of 6-benzylaminopurine in addition to sole nitrate restored leaf area, photosynthetic capacity and N content in leaves to the similar as those under mixed-N treatment. Partial defoliation, an effective method to enhance the sink strength, induced more cytokinin content in leaflets under two treatments relative to their respective controls and ultimately resulted in larger photosynthesis capacity and leaf area. These results suggest that mixed-N-enhanced plant growth through the coordination of carbon and N metabolism largely depends on the signal molecule cytokinin modulated by N supplies.


Assuntos
Compostos de Amônio , Solanum tuberosum , Compostos de Amônio/metabolismo , Carbono/metabolismo , Citocininas/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Plantas/metabolismo , Solanum tuberosum/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35163389

RESUMO

Tuber shape is one of the most important quality traits in potato appearance. Since poor or irregular shape results in higher costs for processing and influences the consumers' willingness to purchase, breeding for shape uniformity and shallow eye depth is highly important. Previous studies showed that the major round tuber shape controlling locus, the Ro locus, is located on chromosome 10. However, fine mapping and cloning of tuber shape genes have not been reported. In this study, the analyses of tissue sectioning and transcriptome sequencing showed that the developmental differences between round and elongated tuber shapes begin as early as the hook stage of the stolon. To fine map tuber shape genes, a high-density genetic linkage map of the Ro region on chromosome 10 based on a diploid segregating population was constructed. The total length of the genetic linkage map was 25.8 cM and the average marker interval was 1.98 cM. Combined with phenotypic data collected from 2014 to 2017, one major quantitative trait locus (QTL) for tuber shape was identified, which explained 61.7-72.9% of the tuber shape variation. Through the results of genotyping and phenotypic investigation of recombinant individuals, Ro was fine mapped in a 193.43 kb interval, which contained 18 genes. Five candidate genes were preliminarily predicted based on tissue sections and transcriptome sequencing. This study provides an important basis for cloning Ro gene(s).


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Loci Gênicos , Tubérculos , Solanum tuberosum , Tubérculos/genética , Tubérculos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo
4.
DNA Res ; 28(6)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34609514

RESUMO

Simple sequence repeats (SSRs) are important sources of genetic diversity and are widely used as markers in genetics and molecular breeding. In this study, we examined four potato genomes of DM1-3 516 R44 (DM) from Solanum phureja, RH89039-16 (RH) from Solanum tuberosum, M6 from Solanum chacoense and Solanum commersonii to determine SSR abundance and distribution and develop a larger list of polymorphic markers for a potentially wide range of uses for the potato community. A total of 1,734,619 SSRs were identified across the four genomes with an average of 433,655 SSRs per genome and 2.31kb per SSR. The most abundant repeat units for mono-, di-, tri-, and tetra-nucleotide SSRs were (A/T)n, (AT/AT)n, (AAT/ATT)n, and (ATAT/ATAT)n, respectively. The SSRs were most abundant (78.79%) in intergenic regions and least abundant (3.68%) in untranslated regions. On average, 168,069 SSRs with unique flanking sequences were identified in the four genomes. Further, we identified 16,245 polymorphic SSR markers among the four genomes. Experimental validation confirmed 99.69% of tested markers could generate target bands. The high-density potato SSR markers developed in this study will undoubtedly facilitate the application of SSR markers for genetic research and marker-pyramiding in potato breeding.


Assuntos
Solanum tuberosum , Marcadores Genéticos , Repetições de Microssatélites , Melhoramento Vegetal , Polimorfismo Genético , Solanum tuberosum/genética
5.
J Dermatol Sci ; 99(3): 146-151, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32600738

RESUMO

Skin diseases bring great psychological and physical impacts on patients, however, a considerable number of skin diseases still lack effective treatments, such as psoriasis, systemic lupus erythematosus, melanoma and so on. Receptor-interacting serine threonine kinase 1 (RIPK1) plays an important role in cell death, especially necroptosis, associated with inflammation and tumor. As many molecules modulate the ubiquitination of RIPK1, disruption of this checkpoint can lead to skin diseases, which can be ameliorated by RIPK1 inhibitors. This review will focus on the molecular mechanism of RIPK1 activation in inflammation as well as the current knowledges on the contribution of RIPK1 in skin diseases.


Assuntos
Dermatite/imunologia , Necroptose/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Neoplasias Cutâneas/imunologia , Animais , Ensaios Clínicos Fase II como Assunto , Dermatite/tratamento farmacológico , Dermatite/genética , Dermatite/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Meia-Vida , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Camundongos , Camundongos Knockout , Necroptose/efeitos dos fármacos , Necroptose/genética , Oxazepinas/farmacologia , Oxazepinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Resultado do Tratamento , Triazóis/farmacologia , Triazóis/uso terapêutico , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Ubiquitinação/imunologia
6.
Plant Sci ; 297: 110525, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32563465

RESUMO

The aim of this study is to elucidate the role of ALDH2B7a during the response to lower temperature in Solanum tuberosum. This gene was found to have altered intragenic DNA methylation status in our previous reports. A total of 18 orthologs of StALDH2B7a were identified in the S. tuberosum genome, which were then divided into 8 aldehyde dehydrogenase (ALDH) subfamilies. The methylation statuses of four intragenic cytosine sites in intron 5 and exon 6 of genomic StALDH2B7a were altered by lower temperature stress, resulting in changes in the expression of StALDH2B7a. Silencing of NbALDH2C4, a homolog of StALDH2B7a in Nicotiana benthamiana, resulted in plants which were sensitive to lower temperature and accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA). These data suggested that the expression of StALDH2B7a was upregulated by alteration of its intragenic cytosine methylation status during lower temperature stress, and additional StALDH2B7a enzymes scavenged excess aldehydes resulting from ROS in a response to cold stress in potato. Our study expands the understanding of the mechanisms involved in plant responses to lower temperature, and provides a new gene source to improve potato tolerance to cold stress in northern China, where lower temperature is one of the key limiting factors for crop production.


Assuntos
Aldeído Desidrogenase/fisiologia , Nicotiana/enzimologia , Proteínas de Plantas/fisiologia , Solanum tuberosum/enzimologia , Resposta ao Choque Frio , Metilação de DNA , Genes de Plantas/genética , Genes de Plantas/fisiologia , Malondialdeído/metabolismo , Filogenia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum/fisiologia , Nicotiana/fisiologia
7.
Phytopathology ; 110(8): 1375-1387, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32248746

RESUMO

Late blight is a devastating potato disease worldwide, caused by Phytophthora infestans. The P. infestans strain 2013-18-306 from Yunnan is a "supervirulent race" that overcomes all 11 known late blight resistance genes (R1 to R11) from Solanum demissum. In a previous study, we identified a diploid wild-type potato JAM1-4 (S. jamesii) with high resistance to 2013-18-306. dRenSeq analysis indicated the presence of novel R genes in JAM1-4. RNA-Seq was used to analyze the late blight resistance response genes and defense regulatory mechanisms of JAM1-4 against 2013-18-306. Gene ontology enrichment and KEGG pathway analysis showed that many disease-resistant pathways were significantly enriched. Analysis of differentially expressed genes (DEGs) revealed an active disease resistance mechanism of JAM1-4, and the essential role of multiple signal transduction pathways and secondary metabolic pathways comprised of SA-JA-ET in plant immunity. We also found that photosynthesis in JAM1-4 was inhibited to promote the immune response. Our study reveals the pattern of resistance-related gene expression in response to a super race strain of potato late blight and provides a theoretical basis for further exploration of potato disease resistance mechanisms, discovery of new late blight resistance genes, and disease resistance breeding.


Assuntos
Phytophthora infestans , Solanum tuberosum , China , Diploide , Doenças das Plantas
8.
G3 (Bethesda) ; 10(2): 623-634, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31818876

RESUMO

Late blight, caused by Phytophthora infestans (P. infestans), is a devastating disease in potato worldwide. Our previous study revealed that the Solanum andigena genotype 03112-233 is resistant to P. infestans isolate 90128, but susceptible to the super race isolate, CN152. In this study, we confirmed by diagnostic resistance gene enrichment sequencing (dRenSeq) that the resistance of 03112-233 toward 90128 is most likely based on a distinct new R gene(s). To gain an insight into the mechanism that governs resistance or susceptibility in 03112-223, comparative transcriptomic profiling analysis based on RNAseq was initiated. Changes in transcription at two time points (24 h and 72 h) after inoculation with isolates 90128 or CN152 were analyzed. A total of 8,881 and 7,209 genes were differentially expressed in response to 90128 and CN152, respectively, and 1,083 differentially expressed genes (DEGs) were common to both time points and isolates. A substantial number of genes were differentially expressed in an isolate-specific manner with 3,837 genes showing induction or suppression following infection with 90128 and 2,165 genes induced or suppressed after colonization by CN152. Hierarchical clustering analysis suggested that isolates with different virulence profiles can induce different defense responses at different time points. Further analysis revealed that the compatible interaction caused higher induction of susceptibility genes such as SWEET compared with the incompatible interaction. The salicylic acid, jasmonic acid, and abscisic acid mediated signaling pathways were involved in the response against both isolates, while ethylene and brassinosteroids mediated defense pathways were suppressed. Our results provide a valuable resource for understanding the interactions between P. infestans and potato.


Assuntos
Perfilação da Expressão Gênica , Phytophthora infestans/genética , Solanum tuberosum/genética , Transcriptoma , Biologia Computacional/métodos , Suscetibilidade a Doenças , Ontologia Genética , Genoma de Planta , Genômica/métodos , Genótipo , Fenótipo , Doenças das Plantas/genética , Reprodutibilidade dos Testes
9.
Plant Biotechnol J ; 18(2): 364-372, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31254434

RESUMO

Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto- or allopolyploid species. Here, we developed a highly efficient and low-cost BAC end analysis protocol, named BAC-anchor, to identify paired-end reads containing large internal gaps. Our approach mainly focused on the identification of high-throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60-100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I- and 165 Mlu I-derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high-coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.


Assuntos
Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Genoma de Planta , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Cromossomos Artificiais Bacterianos/genética , Biblioteca Gênica , Genoma de Planta/genética , Genômica/métodos , Análise de Sequência de DNA , Solanum tuberosum/genética
10.
Food Chem ; 290: 201-207, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31000038

RESUMO

Cross breeding may create wider genetic variation than two parents used in hybridization, but breeding efforts towards starch quality improvement are less reported in potato. A cross was made between Zhongshu-3 and Favorita to select desired starch properties in progenies. Among 206 F1 clones with potential high yield, starch qualities such as apparent amylose content (AAC), pasting viscosity, and thermal properties were further evaluated. A wide variation was observed in different starch physicochemical indices for 206 potato accessions. Twenty clones with high/low AAC, peak viscosity and peak gelatinization temperature were selected and then grown at another location to evaluate the stability of the traits. Similar wide range of variation in the starch properties was observed. Cluster analysis based on starch properties of the 20 selected clones indicating relative stability of the starch property traits across different locations. New breeding lines identified have potential for application in food and other industries.


Assuntos
Variação Genética , Solanum tuberosum/metabolismo , Amido/química , Amilose/química , Análise por Conglomerados , Genótipo , Fenótipo , Estações do Ano , Plântula/genética , Plântula/metabolismo , Solanum tuberosum/genética , Amido/metabolismo , Temperatura , Viscosidade
11.
Int J Mol Sci ; 20(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781424

RESUMO

Potato (Solanum tuberosum L.) is one of the three most important food crops worldwide; however, it is strongly affected by drought stress. The precise molecular mechanisms of drought stress response in potato are not very well understood. The diploid potato genotype P3-198 has been verified to be highly resistant to drought stress. Here, a time-course experiment was performed to identify drought resistance response genes in P3-198 under polyethylene glycol (PEG)-induced stress using RNA-sequencing. A total of 1665 differentially expressed genes (DEGs) were specifically identified, and based on gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the transcription factor activity, protein kinase activity, and the plant hormone signal transduction process were significantly enriched. Annotation revealed that these DEGs mainly encode transcription factors, protein kinases, and proteins related to redox regulation, carbohydrate metabolism, and osmotic adjustment. In particular, genes encoding abscisic acid (ABA)-dependent signaling molecules were significantly differentially expressed, which revealed the important roles of the ABA-dependent signaling pathway in the early response of P3-198 to drought stress. Quantitative real-time PCR experimental verification confirmed the differential expression of genes in the drought resistance signaling pathway. Our results provide valuable information for understanding potato drought-resistance mechanisms, and also enrich the gene resources available for drought-resistant potato breeding.


Assuntos
Diploide , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum tuberosum/genética , Solanum tuberosum/fisiologia , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genótipo , Osmose , Fenótipo , Polietilenoglicóis/farmacologia , Proteínas Quinases/metabolismo , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
12.
Int J Mol Sci ; 19(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297627

RESUMO

Early maturity is one of the most important agronomical traits in potato breeding. To identify the DNA segment that codes for early maturity, a tetraploid potato segregation population of "Zhongshu 19" × "Zhongshu 3" was genetically analyzed, using a combination of high throughput simplified genome sequencing (2b-RAD) and bulked segregant analysis (BSA). The DNA segment related to the early-maturity trait was identified at the 3.7~4.2 Mb locus on the short arm of chromosome 5. Eight molecular markers were developed, of which five were closely linked to the early-maturity trait loci. Additionally, 42 simple sequence repeats (SSR) markers were constructed based on the reference sequence of Solanum tuberosum group Phureja DM1-3 516 R44 (DM). Using the TetraploidMap software, the linkage map of chromosome 5 was constructed with 50 markers. The total map length was 172 centiMorgan (cM), with an average genetic distance of 3.44 cM. Correlating molecular and phenotypic data of the segregating population, the mapped Quantitative Trait Loci (QTL) on the short arm of chromosome 5 contributed to 33.55% of the early-maturity phenotype. The early-maturity QTL was located at 84 cM, flanked by the SSR5-85-1 and SCAR5-8 markers. The QTL was fine-mapped to 471 kb. Using DNA sequence annotation, 34 genes were identified in this region, 12 of them with unknown function. Among the other 22 annotated genes, E3 ubiquitin ligase gene PUB14 could be related to maturity and regulation of tuber formation. The constructed QTL map is a useful basic tool for the cloning of early-maturity related genes in tetraploid potatoes.


Assuntos
Locos de Características Quantitativas , Solanum tuberosum/genética , Verduras/genética , Repetições de Microssatélites , Característica Quantitativa Herdável , Solanum tuberosum/crescimento & desenvolvimento , Tetraploidia , Verduras/crescimento & desenvolvimento
13.
Mol Ecol ; 25(16): 4047-58, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27288627

RESUMO

Temperature is one of the most important environmental parameters with crucial impacts on nearly all biological processes. Due to anthropogenic activity, average air temperatures are expected to increase by a few degrees in coming decades, accompanied by an increased occurrence of extreme temperature events. Such global trends are likely to have various major impacts on human society through their influence on natural ecosystems, food production and biotic interactions, including diseases. In this study, we used a combination of statistical genetics, experimental evolution and common garden experiments to investigate the evolutionary potential for thermal adaptation in the potato late blight pathogen, Phytophthora infestans, and infer its likely response to changing temperatures. We found a trade-off associated with thermal adaptation to heterogeneous environments in P. infestans, with the degree of the trade-off peaking approximately at the pathogen's optimum growth temperature. A genetic trade-off in thermal adaptation was also evidenced by the negative association between a strain's growth rate and its thermal range for growth, and warm climates selecting for a low pathogen growth rate. We also found a mirror effect of phenotypic plasticity and genetic adaptation on growth rate. At below the optimum, phenotypic plasticity enhances pathogen's growth rate but nature selects for slower growing genotypes when temperature increases. At above the optimum, phenotypic plasticity reduces pathogen's growth rate but natural selection favours for faster growing genotypes when temperature increases further. We conclude from these findings that the growth rate of P. infestans will only be marginally affected by global warming.


Assuntos
Adaptação Biológica/genética , Phytophthora infestans/genética , Solanum tuberosum/microbiologia , Temperatura , Genótipo , Fenótipo , Seleção Genética
14.
PLoS One ; 10(3): e0122036, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25825911

RESUMO

Stearoyl-acyl carrier protein desaturase (SAD), locating in the plastid stroma, is an important fatty acid biosynthetic enzyme in higher plants. SAD catalyzes desaturation of stearoyl-ACP to oleyl-ACP and plays a key role in determining the homeostasis between saturated fatty acids and unsaturated fatty acids, which is an important player in cold acclimation in plants. Here, four new full-length cDNA of SADs (ScoSAD, SaSAD, ScaSAD and StSAD) were cloned from four Solanum species, Solanum commersonii, S. acaule, S. cardiophyllum and S. tuberosum, respectively. The ORF of the four SADs were 1182 bp in length, encoding 393 amino acids. A sequence alignment indicated 13 amino acids varied among the SADs of three wild species. Further analysis showed that the freezing tolerance and cold acclimation capacity of S. commersonii are similar to S. acaule and their SAD amino acid sequences were identical but differed from that of S. cardiophyllum, which is sensitive to freezing. Furthermore, the sequence alignments between StSAD and ScoSAD indicated that only 7 different amino acids at residues were found in SAD of S. tuberosum (Zhongshu8) against the protein sequence of ScoSAD. A phylogenetic analysis showed the three wild potato species had the closest genetic relationship with the SAD of S. lycopersicum and Nicotiana tomentosiformis but not S. tuberosum. The SAD gene from S. commersonii (ScoSAD) was cloned into multiple sites of the pBI121 plant binary vector and transformed into the cultivated potato variety Zhongshu 8. A freeze tolerance analysis showed overexpression of the ScoSAD gene in transgenic plants significantly enhanced freeze tolerance in cv. Zhongshu 8 and increased their linoleic acid content, suggesting that linoleic acid likely plays a key role in improving freeze tolerance in potato plants. This study provided some new insights into how SAD regulates in the freezing tolerance and cold acclimation in potato.


Assuntos
Genes de Plantas , Oxigenases de Função Mista/genética , Solanum tuberosum/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , Evolução Molecular , Congelamento , Oxigenases de Função Mista/química , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Solanum tuberosum/enzimologia , Solanum tuberosum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA