Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 113: 154733, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36870307

RESUMO

BACKGROUND: Jiang-Tang-San-Huang (JTSH) pill, a traditional Chinese medicine (TCM) prescription, has long been applied to clinically treat type 2 diabetes mellitus (T2DM), while the underlying antidiabetic mechanism remains unclarified. Currently, it is believed that the interaction between intestinal microbiota and bile acids (BAs) metabolism mediates host metabolism and promotes T2DM. PURPOSE: To elucidate the underlying mechanisms of JTSH for treating T2DM with animal models. METHODS: In this study, male SD rats received high-fat diet (HFD) and streptozotocin (STZ) injection to induce T2DM and were treated with different dosages (0.27, 0.54 and 1.08 g/kg) of JTSH pill for 4 weeks; metformin was given as a positive control. Alterations of gut microbiota and BA profiles in the distal ileum were assessed by 16S ribosomal RNA gene sequencing and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), respectively. Additionally, we conducted quantitative Real Time-PCR and western blotting to determine the mRNA and protein expression levels of intestinal farnesoid X receptor (FXR), fibroblast growth factor 15 (FGF15), Takeda G-protein-coupled receptor 5 (TGR5) and glucagon-like peptide 1 (GLP-1) as well as hepatic cytochrome P450, family 7, subfamily a, poly-peptide 1 (CYP7A1) and cytochrome P450, family 8, subfamily b, poly-peptide 1 (CYP8B1), which are involved in BAs metabolism and enterohepatic circulation. RESULTS: Here, the results revealed that JTSH treatment significantly ameliorated hyperglycaemia, insulin resistance (IR), hyperlipidaemia, and pathological changes in the pancreas, liver, kidney and intestine and reduced the serum levels of pro-inflammatory cytokines in T2DM model rats. 16S rRNA sequencing and UPLC-MS/MS showed that JTSH treatment could modulate gut microbiota dysbiosis by preferentially increasing bacteria (e.g., Bacteroides, Lactobacillus, Bifidobacterium) with bile-salt hydrolase (BSH) activity, which might in turn lead to the accumulation of ileal unconjugated BAs (e.g., CDCA, DCA) and further upregulate the intestinal FXR/FGF15 and TGR5/GLP-1 signaling pathways. CONCLUSION: The study demonstrated that JTSH treatment could alleviate T2DM by modulating the interaction between gut microbiota and BAs metabolism. These findings suggest that JTSH pill may serve as a promising oral therapeutic agent for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Cromatografia Líquida , RNA Ribossômico 16S , Ácidos e Sais Biliares/metabolismo , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Fígado/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo
2.
Front Pharmacol ; 13: 828920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222043

RESUMO

Twenty-Five Wei'er Tea Pills (TFP), a traditional Tibetan medicine, has shown to have a promising therapeutic effect in patients with Rheumatoid arthritis (RA), as well as being safe. Nonetheless, there have been limited pharmacological studies that have explored this therapeutic option. As gut microbiota has been proven to have a critical role in the pathogenesis of RA, this study aims to explore and reveal relevant ways by which TFP interacts with the chemical crosstalk between the gut microbiome and its host. 16S rRNA sequencing, combined with un-targeted metabolomics, were conducted on collagen-induced arthritis (CIA) rats. CIA model rats treated with TFP showed significant improvement in weight gain, pathological phenomena in joints, as well as decreased serum levels of TNF-α, IL-6 and increased level of IL-4 and IL-10. Significant dysfunction in the gut microbiome and alteration in serum metabolites were observed in CIA model rats, which were restored by TFP treatment. Coherence analysis indicated that TFP modulated the pathways of histidine metabolism, phenylalanine metabolism, alanine, aspartate, glutamate metabolism, amino sugar and nucleotide sugar metabolism owing to the abundances of Lactobacillus, Bacteroides, Prevotellaceae_UCG-001 and Christensenellaceae_R-7_group in the gut microflora. The corresponding metabolites involved L-histidine, histamine, phenylethylamine, asparagine, L-aspartic acid, D-fructose 1-phosphate, D-Mannose 6-phosphate, D-Glucose 6-phosphate, and Glucose 1-phosphate. In conclusion, this study reveals the ameliorative effects of TFP on RA through the chemical crosstalk that exists between the gut microbiota and its host, and also further enriches our understandings of the pathogenesis of RA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA