Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(26): 29668-29678, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749592

RESUMO

Therapeutic platforms with spatiotemporal control were recently of considerable interest. However, the site-specific regulation of chemotherapeutics release remains an enormous challenge. Herein, a versatile nanoplatform capable of tumor-specific delivery and controlled drug release, coined as PDDFe, was constructed for elevating cancer theranostics. Iron-oxide nanoparticles (IONPs) and doxorubicin (Dox) were encapsulated in pH/thermal-sensitive micelles composed of poly(ethylene)glycol-poly(ß-amino esters) and dipalmitoyl phosphatidylcholine to obtain tumor-targeted dual-responsive nanoplatforms. With remarkable magnetic targeting effects, PDDFe specifically accumulated at tumor locations. After internalization by cancer cells, the acidic environment and localized heat generated by hyperthermia therapy would spur PDDFe to become loose and collapse to liberate its payload. In addition to boosting the release, the increased temperature also resulted in direct tumor damage. Meanwhile, the released Dox and IONPs, respectively, stimulated chemotherapy and chemodynamic therapy to jointly destroy cancer, thus leading to a pronounced therapeutic effect. In vivo magnetic resonance/fluorescence/photoacoustic imaging experiments validated that the dual-sensitive nanoplatforms were able to accumulate at the tumor sites. Treatment with PDDFe followed by alternating magnetic field and laser irradiation could prime hyperthermia/chemo/chemodynamic therapy to effectively retard tumor growth. This work presents a nanoplatform with a site-specific controlled release characteristic, showing great promises in potentiating drug delivery and advancing combinational cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico
2.
Mater Sci Eng C Mater Biol Appl ; 129: 112351, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34579877

RESUMO

Phototherapy has attracted increasing attention in cancer therapy owing to its non-invasive nature, high spatiotemporal selectivity, and negligible side effects. However, a single photosensitizer often exhibits poor photothermal conversion efficiency or insufficient reactive oxygen species (ROS) productivity. Even worse, the ROS can be consumed by tumor overexpressed reductive glutathione, resulting in severely compromised phototherapy. In this paper, we prepared a MnII-coordination driven dual-photosensitizers co-assemblies (IMCP) for imaging-guided self-enhanced PDT/PTT. Specifically, a photothermal agent indocyanine green (ICG), a photodynamic agent chlorin e6 (Ce6), and a transition metal ion (MnII/III) were chosen to synthesize the nanodrug via coordination-driven co-assembly. The as-prepared IMCP exhibited extremely high photosensitizer payload (96 wt%), excellent physiological stability, and outstanding tumor accumulation. Moreover, the existence of MnII not only assists the nanostructure formation but also could competitively coordinate with GSH to minimize the unnecessary ROS consumption, thus improving PDT efficiency. Meanwhile, benefiting from the intrinsic fluorescence, photoacoustic imaging ability of photosensitizers, and the MRI contrast potential of MnII/III, IMCP exhibited superior imaging potential for guiding tumor phototherapy. By changing the excitation wavelength suitably, IMCP could realize the switch between PTT and PDT. In short, the dual-PSs co-assembled nanotheranostic has great potential for multi-modal imaging guided phototherapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Verde de Indocianina , Imagem Multimodal , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia
3.
J Colloid Interface Sci ; 600: 243-255, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34020121

RESUMO

As a promising noninvasive tumor treatment modality, dual phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), has drawn extensive research interest in imaging-guided synergistic antitumor treatment. However, developing a high-efficient phototherapeutic agent is still a huge challenge, since single photosensitizer often suffers from the insufficient photothermal conversion efficiency (PCE) or low reactive oxygen species (ROS) productivity. Moreover, the overexpression of reductive glutathione (GSH) in tumor cells also severely compromises PDT efficiency. Here, inspired by the glutathione oxidase activity of high-valent transition metal ions, we designed a copper-coordinated nanotheranostic (PhA@NanoICG) by the coordination-driven co-assembly of photothermal-agent indocyanine green (ICG) and photodynamic-agent pheophorbide A (PhA), in which Cu2+ acted as a bridge to tightly associate ICG with PhA. Such carrier-free metal-coordinated nanotheranostics exhibited ultra-high dual-photosensitizers co-loading (~96.74 wt%) and excellent structural stability. Notably, NanoICG significantly increase the PCE of ICG via J-aggregation induced UV-vis absorption red-shift. Once PhA@NanoICG accumulated in tumor sites, they could be disassembled triggered by the weakly acidic and highly reducible tumor microenvironment. Moreover, the Cu2+ can deplete intracellular GSH and impair cellular antioxidant defense system, reducing the unnecessary ROS consumption caused by glutathione. Under fluorescence/photoacoustic imaging-guided laser irradiation, local hyperthermia and ROS were generated to induce tumor cells apoptosis. The in vitro and in vivo experiments consistently confirm that PhA@NanoICG could induce remarkable tumor inhibition through self-enhanced PTT and PDT, which may pave a new way for cancer therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Fotoquimioterapia , Glutationa , Humanos , Verde de Indocianina , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Fototerapia , Nanomedicina Teranóstica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA