RESUMO
Complement component 3 (C3) deficiency has recently been known as a cause of constipation, without studies on the therapeutic efficacy. To evaluate the therapeutic agents against C3-deficiency-induced constipation, improvements in the constipation-related parameters and the associated molecular mechanisms were examined in FVB/N-C3em1Hlee/Korl knockout (C3 KO) mice treated with uridine (Urd) and the aqueous extract of Liriope platyphylla L. (AEtLP) with laxative activity. The stool parameters and gastrointestinal (GI) transit were increased in Urd- and AEtLP-treated C3 KO mice compared with the vehicle (Veh)-treated C3 KO mice. Urd and AEtLP treatment improved the histological structure, junctional complexes of the intestinal epithelial barrier (IEB), mucin secretion ability, and water retention capacity. Also, an improvement in the composition of neuronal cells, the regulation of excitatory function mediated via the 5-hydroxytryptamine (5-HT) receptors and muscarinic acetylcholine receptors (mAChRs), and the regulation of the inhibitory function mediated via the neuronal nitric oxide synthase (nNOS) and inducible NOS (iNOS) were detected in the enteric nervous system (ENS) of Urd- and AEtLP-treated C3 KO mice. Therefore, the results of the present study suggest that C3-deficiency-induced constipation can improve with treatment with Urd and AEtLP via the regulation of the mucin secretion ability, water retention capacity, and ENS function.
Assuntos
Complemento C3 , Extratos Vegetais , Camundongos , Animais , Camundongos Knockout , Uridina/farmacologia , Uridina/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Constipação Intestinal/tratamento farmacológico , Constipação Intestinal/induzido quimicamente , Mucinas , ÁguaRESUMO
Introduction: The therapeutic effects and mechanisms of Dipterocarpus tuberculatus (D. tuberculatus) extracts have been examined concerning inflammation, photoaging, and gastritis; however, their effect on obesity is still being investigated. Methods: We administered a methanol extract of D. tuberculatus (MED) orally to Lep knockout (KO) mice for 4 weeks to investigate the therapeutic effects on obesity, weight gain, fat accumulation, lipid metabolism, inflammatory response, and ß-oxidation. Results: In Lep KO mice, MED significantly reduced weight gains, food intake, and total cholesterol and glyceride levels. Similar reductions in fat weights and adipocyte sizes were also observed. Furthermore, MED treatment reduced liver weight, lipid droplet numbers, the expressions of adipogenesis and lipogenesis-related genes, and the expressions of lipolysis regulators in liver tissues. Moreover, the iNOS-mediated COX-2 induction pathway, the inflammasome pathway, and inflammatory cytokine levels were reduced, but ß-oxidation was increased, in the livers of MED-treated Lep KO mice. Conclusion: The results of this study suggest that MED ameliorates obesity and has considerable potential as an anti-obesity treatment.
Assuntos
Metabolismo dos Lipídeos , Obesidade , Extratos Vegetais , Animais , Camundongos , Lipogênese , Camundongos Knockout , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Aumento de Peso , Extratos Vegetais/uso terapêutico , Dipterocarpaceae/químicaRESUMO
Aloe vera (A. vera) has been studied as a treatment option for ulcerative colitis (UC), but there is a lack of scientific evidence showing whether treatment with Aloe saponaria (A. saponaria) can also be beneficial. To investigate the therapeutic potential of A. saponaria as a treatment for UC, clinical symptoms, histopathological characteristics of the colon, inflammatory response, and toxicity were analyzed in dextran sulfate sodium (DSS)-induced UC mice after administration of aqueous extracts of A. saponaria (AAS) for 7 days. The total polyphenol and tannin content of AAS was 272 µg/g and 163 µg/g, respectively. AAS exhibited significant antioxidant activity. Several clinical symptoms, including body weight, colon length, and hematochezia, remarkably improved in the DSS+AAS treated group compared to the DSS+Vehicle-treated group. In addition, similar improvements were detected in the histopathological characteristics and mucin-secreting ability in the colon of DSS-induced UC mice after the administration of AAS. The levels of infiltrated inflammatory cells and cytokine expression were significantly decreased in a dose-dependent manner in the colon of the DSS+AAS-treated group. These alterations in inflammatory response were accompanied by a significant recovery of the protein kinase C/extracellular signal-regulated kinase (PKC/ERK) and phosphatidylinositol-3-kinase/serine-threonine protein kinase (PI3K/Akt) signaling pathways. However, the levels of key markers for hepatotoxicity and nephrotoxicity consistently remained between those of the DSS+AAS-treated and the No groups. Therefore, the results of the present study provide novel evidence that AAS may improve the clinical symptoms and attenuate the inflammatory response in DSS-induced UC mice and does not have any significant hepatotoxicity or nephrotoxicity.