Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Apoptosis ; 24(3-4): 290-300, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30684145

RESUMO

Dihydromyricetin (DMY) is a traditional herbal medicine, with a wide range of biological activities. Extreme hyperthermia (HT) can suppress the immune system; thus, protection of the immune system is beneficial in heat-related diseases, including heatstroke. In our study, we revealed the protective effect of DMY against HT-induced apoptosis and analysed the underlying molecular mechanisms. We incubated human myelomonocytic lymphoma U937 cells at 44 °C for 30 min with or without DMY and followed by further incubation for 6 h at 37 °C. Cell viability was determined by the CCK-8 assay. DMY did not cause any cytotoxic effects in U937 cells even at high doses. HT treatment alone induced significant apoptosis, which was detected by DNA fragmentation and Annexin V/PI double staining. Mitochondrial dysfunction was identified by loss of mitochondrial membrane potential (MMP) during heat stimulation. Apoptotic related proteins were involved, truncated Bid and caspase-3 were upregulated, and Mcl-1 and XIAP were downregulated. We also identified the related signalling pathways, such as the MAPK and PI3K/AKT pathways. However, changes in HT were dramatically reversed when the cells were pretreated with DMY before exposure to HT. Overall, MAPKs and PI3K/AKT signalling, mitochondrial dysfunction, and caspase-mediated pathways were involved in the protective effect of DMY against HT-induced apoptosis in U937 cells, which was totally reversed by DMY pretreatment. These findings indicate a new clinical therapeutic strategy for the protection of immune cells during heatstroke.


Assuntos
Apoptose/efeitos dos fármacos , Febre/metabolismo , Flavonóis/farmacologia , Linfoma/tratamento farmacológico , Substâncias Protetoras/farmacologia , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Humanos , Linfoma/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA