Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475037

RESUMO

To reveal the impact of cadmium stress on the physiological mechanism of lettuce, simultaneous determination and correlation analyses of chlorophyll content and photosynthetic function were conducted using lettuce seedlings as the research subject. The changes in relative chlorophyll content, rapid chlorophyll fluorescence induction kinetics curve, and related chlorophyll fluorescence parameters of lettuce seedling leaves under cadmium stress were detected and analyzed. Furthermore, a model for estimating relative chlorophyll content was established. The results showed that cadmium stress at 1 mg/kg and 5 mg/kg had a promoting effect on the relative chlorophyll content, while cadmium stress at 10 mg/kg and 20 mg/kg had an inhibitory effect on the relative chlorophyll content. Moreover, with the extension of time, the inhibitory effect became more pronounced. Cadmium stress affects both the donor and acceptor sides of photosystem II in lettuce seedling leaves, damaging the electron transfer chain and reducing energy transfer in the photosynthetic system. It also inhibits water photolysis and decreases electron transfer efficiency, leading to a decline in photosynthesis. However, lettuce seedling leaves can mitigate photosystem II damage caused by cadmium stress through increased thermal dissipation. The model established based on the energy captured by a reaction center for electron transfer can effectively estimate the relative chlorophyll content of leaves. This study demonstrates that chlorophyll fluorescence techniques have great potential in elucidating the physiological mechanism of cadmium stress in lettuce, as well as in achieving synchronized determination and correlation analyses of chlorophyll content and photosynthetic function.


Assuntos
Cádmio , Lactuca , Complexo de Proteína do Fotossistema II/metabolismo , Fluorescência , Fotossíntese , Clorofila , Plântula , Folhas de Planta/metabolismo
2.
Plant Cell Environ ; 47(2): 682-697, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882446

RESUMO

Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.


Assuntos
Camellia sinensis , Lepidópteros , Animais , Camellia sinensis/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Herbivoria , Larva , Chá/metabolismo , Glucosídeos/metabolismo , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 193(2): 1491-1507, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37315209

RESUMO

Cold and drought stresses severely limit crop production and can occur simultaneously. Although some transcription factors and hormones have been characterized in plants subjected each stress, the role of metabolites, especially volatiles, in response to cold and drought stress exposure is rarely studied due to lack of suitable models. Here, we established a model for studying the role of volatiles in tea (Camellia sinensis) plants experiencing cold and drought stresses simultaneously. Using this model, we showed that volatiles induced by cold stress promote drought tolerance in tea plants by mediating reactive oxygen species and stomatal conductance. Needle trap microextraction combined with GC-MS identified the volatiles involved in the crosstalk and showed that cold-induced (Z)-3-hexenol improved the drought tolerance of tea plants. In addition, silencing C. sinensis alcohol dehydrogenase 2 (CsADH2) led to reduced (Z)-3-hexenol production and significantly reduced drought tolerance in response to simultaneous cold and drought stress. Transcriptome and metabolite analyses, together with plant hormone comparison and abscisic acid (ABA) biosynthesis pathway inhibition experiments, further confirmed the roles of ABA in (Z)-3-hexenol-induced drought tolerance of tea plants. (Z)-3-Hexenol application and gene silencing results supported the hypothesis that (Z)-3-hexenol plays a role in the integration of cold and drought tolerance by stimulating the dual-function glucosyltransferase UGT85A53, thereby altering ABA homeostasis in tea plants. Overall, we present a model for studying the roles of metabolites in plants under multiple stresses and reveal the roles of volatiles in integrating cold and drought stresses in plants.


Assuntos
Camellia sinensis , Resposta ao Choque Frio , Ácido Abscísico/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Secas , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Chá/metabolismo , Regulação da Expressão Gênica de Plantas
4.
BMC Genomics ; 24(1): 362, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380940

RESUMO

BACKGROUND: PYL (Pyrabactin resistance 1-like) protein is a receptor of abscisic acid (ABA), which plays an important role in ABA signaling and influences plant growth and development and stress response. However, studies on PYL gene family in tea plants have not been reported. RESULTS: In this study, we identified 20 PYL genes from the reference genome of tea plant ('Shuchazao'). Phylogeny analysis indicated that PYLs from tea and other plant species were clustered into seven groups. The promoter region of PYL genes contains a large number of cis-elements related to hormones and stresses. A large number of PYL genes responding to stress were found by analyzing the expression levels of abiotic stress and biotic stress transcriptome data. For example, CSS0047272.1 were up-regulated by drought stress, and CSS0027597.1 could respond to both anthracnose disease and geometrid feeding treatments. In addition, 10 PYL genes related to growth and development were verified by RT-qPCR and their tissue expression characteristics were revealed. CONCLUSIONS: Our results provided a comprehensive characteristic of the PYL gene family in tea plants and provided an important clue for further exploring its functions in the growth and development, and resistance to stress of tea plants.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Ácido Abscísico , Secas , Transcriptoma , Chá
5.
New Phytol ; 238(5): 2080-2098, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36908092

RESUMO

Glycosyltransferases are nature's versatile tools to tailor the functionalities of proteins, carbohydrates, lipids, and small molecules by transferring sugars. Prominent substrates are hydroxycoumarins such as scopoletin, which serve as natural plant protection agents. Similarly, C13-apocarotenoids, which are oxidative degradation products of carotenoids/xanthophylls, protect plants by repelling pests and attracting pest predators. We show that C13-apocarotenoids interact with the plant glycosyltransferase NbUGT72AY1 and induce conformational changes in the enzyme catalytic center ultimately reducing its inherent UDP-α-d-glucose glucohydrolase activity and increasing its catalytic activity for productive hydroxycoumarin substrates. By contrast, C13-apocarotenoids show no effect on the catalytic activity toward monolignol lignin precursors, which are competitive substrates. In vivo studies in tobacco plants (Nicotiana benthamiana) confirmed increased glycosylation activity upon apocarotenoid supplementation. Thus, hydroxycoumarins and apocarotenoids represent specialized damage-associated molecular patterns, as they each provide precise information about the plant compartments damaged by pathogen attack. The molecular basis for the C13-apocarotenoid-mediated interplay of two plant protective mechanisms and their function as allosteric enhancers opens up potential applications of the natural products in agriculture and pharmaceutical industry.


Assuntos
Glicosiltransferases , Lignina , Glicosiltransferases/metabolismo , Lignina/metabolismo , Plantas/metabolismo , Carotenoides/metabolismo , Nicotiana/metabolismo
6.
Plant J ; 109(6): 1489-1506, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34931743

RESUMO

Cold and drought stress are the most critical stresses encountered by crops and occur simultaneously under field conditions. However, it is unclear whether volatiles contribute to both cold and drought tolerance, and if so, by what mechanisms they act. Here, we show that airborne eugenol can be taken up by the tea (Camellia sinensis) plant and metabolized into glycosides, thus enhancing cold and drought tolerance of tea plants. A uridine diphosphate (UDP)-glucosyltransferase, UGT71A59, was discovered, whose expression is strongly induced by multiple abiotic stresses. UGT71A59 specifically catalyzes glucosylation of eugenol glucoside in vitro and in vivo. Suppression of UGT71A59 expression in tea reduced the accumulation of eugenol glucoside, lowered reactive oxygen species (ROS) scavenging capacity, and ultimately impaired cold and drought stress tolerance. Exposure to airborne eugenol triggered a marked increase in UGT71A59 expression, eugenol glucoside accumulation, and cold tolerance by modulating ROS accumulation and CBF1 expression. It also promoted drought tolerance by altering abscisic acid homeostasis and stomatal closure. CBF1 and CBF3 play positive roles in eugenol-induced cold tolerance and CBF2 may be a negative regulator of eugenol-induced cold tolerance in tea plants. These results provide evidence that eugenol functions as a signal in cold and drought tolerance regulation and shed new light on the biological functions of volatiles in the response to multiple abiotic stresses in plants.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Temperatura Baixa , Secas , Eugenol/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Chá/metabolismo
7.
Plant Physiol ; 188(3): 1507-1520, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34893910

RESUMO

Plant immune response following pathogenic infection is regulated by plant hormones, and salicylic acid (SA) and its sugar conjugates play important roles in establishing basal resistance. Here, the important pathogen Pseudopestalotiopsis camelliae-sinensis (Pcs) was isolated from tea gray blight, one of the most destructive diseases in tea plantations. Transcriptomic analysis led to the discovery of the putative Camellia sinensis UDP-glucosyltransferase CsUGT87E7 whose expression was significantly induced by SA application and Pcs infection. Recombinant CsUGT87E7 glucosylates SA with a Km value of 12 µM to form SA glucose ester (SGE). Downregulation reduced the accumulation of SGE, and CsUGT87E7-silenced tea plants exhibited greater susceptibility to pathogen infection than control plants. Similarly, CsUGT87E7-silenced tea leaves accumulated significantly less SA after infection and showed reduced expression of pathogenesis-related genes. These results suggest that CsUGT87E7 is an SA carboxyl glucosyltransferase that plays a positive role in plant disease resistance by modulating SA homeostasis through a mechanism distinct from that described in Arabidopsis (Arabidopsis thaliana). This study provides insight into the mechanisms of SA metabolism and highlights the role of SGE in the modulation of plant disease resistance.


Assuntos
Ascomicetos/patogenicidade , Camellia sinensis/genética , Camellia sinensis/metabolismo , Camellia sinensis/microbiologia , Resistência à Doença/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Ácido Salicílico/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Doenças das Plantas/microbiologia
8.
Plant Cell Environ ; 44(11): 3667-3680, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34449086

RESUMO

Herbivore-induced plant volatiles prime neighbouring plants to respond more strongly to subsequent attacks. However, the key volatiles that trigger this state and their priming mechanisms remain largely unknown. The tea geometrid Ectropis obliqua is one of the most devastating leaf-feeding pests of tea plants. Here, plant-plant communication experiments demonstrated that volatiles emitted from tea plants infested by E. obliqua larvae triggered neighbouring plants to release volatiles that repel E. obliqua adult, especially mated females. Volatile analyses revealed that the quantity of eight volatiles increased dramatically when plants were exposed to volatiles emitted by infested tea plants, including (Z)-3-hexenol, linalool, α-farnesene, ß-Ocimene and (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT). The results of behavioural bioassays demonstrated that ß-Ocimene strongly repelled mated E. obliqua females. Individual volatile compound exposure experiments revealed that (Z)-3-hexenol, linalool, α-farnesene and DMNT triggered the emission of ß-Ocimene from tea plants. Chemical inhibition experiments demonstrated that the emission of ß-Ocimene induced by (Z)-3-hexenol, linalool, α-farnesene and DMNT were dependent on Ca2+ and JA signalling. These findings help us to understand how E. obliqua moths respond to volatiles emitted from tea plants and provide new insight into volatile-mediated plant-plant interactions. They have potential significance for the development of novel insect and pest control strategies in crops.


Assuntos
Monoterpenos Acíclicos/metabolismo , Alcenos/metabolismo , Camellia sinensis , Herbivoria , Mariposas/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Camellia sinensis/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Mariposas/crescimento & desenvolvimento , Comportamento Sexual Animal
9.
Plant Cell Environ ; 44(4): 1178-1191, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32713005

RESUMO

Herbivore-induced plant volatiles play important ecological roles in defense against stresses. However, if and which volatile(s) are involved in the plant-plant communication in response to herbivorous insects in tea plants remains unknown. Here, plant-plant communication experiments confirm that volatiles emitted from insects-attacked tea plants can trigger plant resistance and reduce the risk of herbivore damage by inducing jasmonic acid (JA) accumulation in neighboring plants. The emission of six compounds was significantly induced by geometrid Ectropis obliqua, one of the most common pests of the tea plant in China. Among them, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) could induce the accumulation of JA and thus promotes the resistance of neighboring intact plants to herbivorous insects. CsCYP82D47 was identified for the first time as a P450 enzyme, which catalyzes the final step in the biosynthesis of DMNT from (E)-nerolidol. Down-regulation of CsCYP82D47 in tea plants resulted in a reduced accumulation of DMNT and significantly reduced the release of DMNT in response to the feeding of herbivorous insects. The first evidence for plant-plant communication in response to herbivores in tea plants will help to understand how plants respond to volatile cues in response to herbivores and provide new insight into the role(s) of DMNT in tea plants.


Assuntos
Alcenos/metabolismo , Camellia sinensis/metabolismo , Ciclopentanos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Oxilipinas/metabolismo , Defesa das Plantas contra Herbivoria , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Animais , Camellia sinensis/genética , Camellia sinensis/fisiologia , Clonagem Molecular , Comunicação , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Larva , Mariposas , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Compostos Orgânicos Voláteis/metabolismo
10.
J Agric Food Chem ; 68(39): 10815-10821, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32840106

RESUMO

ß-Ionone is a carotenoid-derived flavor and fragrance compound with a complex fruity and woody scent, known for its violet aroma. Due to the low odor threshold, ß-ionone dramatically affects the aroma and quality of tea. Previous studies have shown that ß-ionone increases during tea withering; however, its formation and regulation during the withering process are far from being understood. As dehydration is the most important stress during the withering of the tea leaves, we isolated a dehydration-induced gene belonging to the subfamily of carotenoid cleavage dioxygenases called carotenoid cleavage dioxygenase 1a (CsCCD1a) from Camellia sinensis and expressed it in Escherichia coli. The recombinant protein could generate volatile ß-ionone and pseudoionone from carotenoids. CsCCD1a was induced by dehydration stress, and its expression was related to the ß-ionone accumulation during tea withering. Overall, this study elucidated that CsCCD1a catalyzes the formation of ß-ionone in C. sinensis and enhanced the understanding of the ß-ionone formation under multiple stresses during the processing of tea.


Assuntos
Camellia sinensis/enzimologia , Dioxigenases/metabolismo , Norisoprenoides/metabolismo , Folhas de Planta/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Camellia sinensis/química , Camellia sinensis/genética , Camellia sinensis/metabolismo , Dioxigenases/química , Dioxigenases/genética , Manipulação de Alimentos , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Água/análise , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA