Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(9)2019 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-31060231

RESUMO

Three Apiaceae species Ledebouriella seseloides, Peucedanum japonicum, and Glehnia littoralis are used as Asian herbal medicines, with the confusingly similar common name "Bang-poong". We characterized the complete chloroplast (cp) genomes and 45S nuclear ribosomal DNA (45S nrDNA) sequences of two accessions for each species. The complete cp genomes of G. littoralis, L. seseloides, and P. japonicum were 147,467, 147,830, and 164,633 bp, respectively. Compared to the other species, the P. japonicum cp genome had a huge inverted repeat expansion and a segmental inversion. The 45S nrDNA cistron sequences of the three species were almost identical in size and structure. Despite the structural variation in the P. japonicum cp genome, phylogenetic analysis revealed that G. littoralis diverged 5-6 million years ago (Mya), while P. japonicum diverged from L. seseloides only 2-3 Mya. Abundant copy number variations including tandem repeats, insertion/deletions, and single nucleotide polymorphisms, were found at the interspecies level. Intraspecies-level polymorphism was also found for L. seseloides and G. littoralis. We developed nine PCR barcode markers to authenticate all three species. This study characterizes the genomic differences between L. seseloides, P. japonicum, and G. littoralis; provides a method of species identification; and sheds light on the evolutionary history of these three species.


Assuntos
Apiaceae/classificação , Apiaceae/genética , Código de Barras de DNA Taxonômico , Rearranjo Gênico , Genoma de Cloroplastos , Plantas Medicinais/classificação , Plantas Medicinais/genética , Cloroplastos/genética , Variações do Número de Cópias de DNA , Genômica/métodos , Mutação , Fases de Leitura Aberta , Filogenia , RNA Ribossômico/genética , Análise de Sequência de DNA , Sequências de Repetição em Tandem
2.
Plant Biotechnol J ; 16(11): 1904-1917, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29604169

RESUMO

Panax ginseng C. A. Meyer, reputed as the king of medicinal herbs, has slow growth, long generation time, low seed production and complicated genome structure that hamper its study. Here, we unveil the genomic architecture of tetraploid P. ginseng by de novo genome assembly, representing 2.98 Gbp with 59 352 annotated genes. Resequencing data indicated that diploid Panax species diverged in association with global warming in Southern Asia, and two North American species evolved via two intercontinental migrations. Two whole genome duplications (WGD) occurred in the family Araliaceae (including Panax) after divergence with the Apiaceae, the more recent one contributing to the ability of P. ginseng to overwinter, enabling it to spread broadly through the Northern Hemisphere. Functional and evolutionary analyses suggest that production of pharmacologically important dammarane-type ginsenosides originated in Panax and are produced largely in shoot tissues and transported to roots; that newly evolved P. ginseng fatty acid desaturases increase freezing tolerance; and that unprecedented retention of chlorophyll a/b binding protein genes enables efficient photosynthesis under low light. A genome-scale metabolic network provides a holistic view of Panax ginsenoside biosynthesis. This study provides valuable resources for improving medicinal values of ginseng either through genomics-assisted breeding or metabolic engineering.


Assuntos
Genoma de Planta/genética , Panax/genética , Adaptação Biológica/genética , Evolução Biológica , Diploide , Genes de Cloroplastos/genética , Genes de Plantas/genética , Ginsenosídeos/biossíntese , Panax/metabolismo , Tetraploidia
3.
BMC Plant Biol ; 15: 138, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-26063328

RESUMO

BACKGROUND: Korean ginseng (Panax ginseng C.A. Meyer) is a highly effective medicinal plant containing ginsenosides with various pharmacological activities, whose roots are produced commercially for crude drugs. RESULTS: Here, we used the Illumina platform to generate over 232 million RNA sequencing reads from four root samples, including whole roots from one-year-old plants and three types of root tissue from six-year-old plants (i.e., main root bodies, rhizomes, and lateral roots). Through de novo assembly and reference-assisted selection, we obtained a non-redundant unigene set consisting of 55,949 transcripts with an average length of 1,250 bp. Among transcripts in the unigene set, 94 % were functionally annotated via similarity searches against protein databases. Approximately 28.6 % of the transcripts represent novel gene sequences that have not previously been reported for P. ginseng. Digital expression profiling revealed 364 genes showing differential expression patterns among the four root samples. Additionally, 32 were uniquely expressed in one-year-old roots, while seven were uniquely expressed in six-year-old root tissues. We identified 38 transcripts encoding enzymes involved in ginsenoside biosynthesis pathways and 189 encoding UDP-glycosyltransferases. CONCLUSION: Our analysis provides new insights into the role of the root transcriptome in development and secondary metabolite biosynthesis in P. ginseng.


Assuntos
Panax/genética , Raízes de Plantas/genética , Transcriptoma/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Estudos de Associação Genética , Ginsenosídeos/biossíntese , Anotação de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
4.
PLoS One ; 10(6): e0117159, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26061692

RESUMO

We report complete sequences of chloroplast (cp) genome and 45S nuclear ribosomal DNA (45S nrDNA) for 11 Panax ginseng cultivars. We have obtained complete sequences of cp and 45S nrDNA, the representative barcoding target sequences for cytoplasm and nuclear genome, respectively, based on low coverage NGS sequence of each cultivar. The cp genomes sizes ranged from 156,241 to 156,425 bp and the major size variation was derived from differences in copy number of tandem repeats in the ycf1 gene and in the intergenic regions of rps16-trnUUG and rpl32-trnUAG. The complete 45S nrDNA unit sequences were 11,091 bp, representing a consensus single transcriptional unit with an intergenic spacer region. Comparative analysis of these sequences as well as those previously reported for three Chinese accessions identified very rare but unique polymorphism in the cp genome within P. ginseng cultivars. There were 12 intra-species polymorphisms (six SNPs and six InDels) among 14 cultivars. We also identified five SNPs from 45S nrDNA of 11 Korean ginseng cultivars. From the 17 unique informative polymorphic sites, we developed six reliable markers for analysis of ginseng diversity and cultivar authentication.


Assuntos
Cloroplastos/genética , DNA de Plantas/genética , Variação Genética , Panax/genética , Genoma de Planta , Mutação INDEL , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA