Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Exp Biol Med (Maywood) ; 248(8): 702-711, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37012677

RESUMO

This study was conducted with gilts as an animal model to test the hypothesis that dietary supplementation with L-citrulline (Cit) improves placental angiogenesis and embryonic survival. Between Days 14 and 25 of gestation, each gilt was fed a corn- and soybean-meal-based diet (2 kg/day) supplemented with 0.4% Cit or an isonitrogenous amount of L-alanine (Control). On Day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Amniotic and allantoic fluids and placentae were analyzed for NOx [stable oxidation products of nitric oxide (NO)], polyamines, and amino acids (AAs). Placentae were also analyzed for syntheses of NO and polyamines; concentrations of AAs and related metabolites; and the expression of angiogenic factors and aquaporins (AQPs). Compared to the control group, Cit supplementation increased (P < 0.01) the number of viable fetuses by 2.0 per litter, the number and diameter of placental blood vessels (21% and 24%, respectively), placental weight (15%), and total allantoic and amniotic fluid volumes (20% and 47%, respectively). Cit supplementation also increased (P < 0.01) enzymatic activities of GTP-cyclohydrolase-1 (32%) and ornithine decarboxylase (27%) in placentae; syntheses of NO (29%) and polyamines (26%); concentrations of NOx (19%), tetrahydrobiopterin (28%), polyamines (22%), cAMP (26%), and cGMP (24%) in placentae; total amounts of NOx (22-40%), polyamines (23-40%), AAs (16-255%), glucose (22-44%), and fructose (22-43%) in allantoic and amniotic fluids. Furthermore, Cit supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors (eNOS [84%], GTP-CH1 [55%], PGF [61%], VEGFA120 [26%], and VEGFR2 [137%], as well as AQPs - AQP1 [105%], AQP3 [53%], AQP5 [77%], AQP8 [57%], and AQP9 [31%]). Collectively, dietary Cit supplementation enhanced placental NO and polyamine syntheses as well as angiogenesis to improve conceptus development and survival.


Assuntos
Citrulina , Placenta , Gravidez , Feminino , Suínos , Animais , Placenta/metabolismo , Citrulina/metabolismo , Suplementos Nutricionais , Poliaminas/metabolismo , Guanosina Trifosfato/metabolismo , Arginina/metabolismo
2.
J Anim Sci Biotechnol ; 13(1): 134, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36476252

RESUMO

BACKGROUND: Most embryonic loss in pigs occurs before d 30 of gestation. Dietary supplementation with L-arginine (Arg) during early gestation can enhance the survival and development of conceptuses (embryo/fetus and its extra-embryonic membranes) in gilts. However, the underlying mechanisms remain largely unknown. METHODS: Between d 14 and 30 of gestation, each gilt was fed daily 2 kg of a corn- and soybean-meal based diet (12% crude protein) supplemented with either 0.4% Arg (as Arg-HCl) or an isonitrogenous amount of L-alanine (Control). There were 10 gilts per treatment group. On d 30 of gestation, gilts were fed either Arg-HCl or L-alanine 30 min before they were hysterectomized, followed by the collection of placentae, embryos, fetal membranes, and fetal fluids. Amniotic and allantoic fluids were analyzed for nitrite and nitrate [NOx; stable oxidation products of nitric oxide (NO)], polyamines, and amino acids. Placentae were analyzed for syntheses of NO and polyamines, water and amino acid transport, concentrations of amino acid-related metabolites, and the expression of angiogenic factors and aquaporins (AQPs). RESULTS: Compared to the control group, Arg supplementation increased (P < 0.05) the number of viable fetuses by 1.9 per litter, the number and diameter of placental blood vessels (+ 25.9% and + 17.0% respectively), embryonic survival (+ 18.5%), total placental weight (+ 36.5%), the total weight of viable fetuses (+ 33.5%), fetal crown-to-rump length (+ 4.7%), and total allantoic and amniotic fluid volumes (+ 44.6% and + 75.5% respectively). Compared to control gilts, Arg supplementation increased (P < 0.05) placental activities of GTP cyclohydrolase-1 (+ 33.1%) and ornithine decarboxylase (+ 29.3%); placental syntheses of NO (+ 26.2%) and polyamines (+ 28.9%); placental concentrations of NOx (+ 22.5%), tetrahydrobiopterin (+ 21.1%), polyamines (+ 20.4%), cAMP (+ 27.7%), and cGMP (+ 24.7%); total amounts of NOx (+ 61.7% to + 96.8%), polyamines (+ 60.7% to + 88.7%), amino acids (+ 39% to + 118%), glucose (+ 60.5% to + 62.6%), and fructose (+ 41.4% to + 57.0%) in fetal fluids; and the placental transport of water (+ 33.9%), Arg (+ 78.4%), glutamine (+ 89.9%), and glycine (+ 89.6%). Furthermore, Arg supplementation increased (P < 0.05) placental mRNA levels for angiogenic factors [VEGFA120 (+ 117%), VEGFR1 (+ 445%), VEGFR2 (+ 373%), PGF (+ 197%), and GCH1 (+ 126%)] and AQPs [AQP1 (+ 280%), AQP3 (+ 137%), AQP5 (+ 172%), AQP8 (+ 165%), and AQP9 (+ 127%)]. CONCLUSION: Supplementing 0.4% Arg to a conventional diet for gilts between d 14 and d 30 of gestation enhanced placental NO and polyamine syntheses, angiogenesis, and water and amino acid transport to improve conceptus development and survival.

3.
Front Biosci (Landmark Ed) ; 27(3): 83, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-35345315

RESUMO

BACKGROUND: Dietary supplementation with L-arginine (Arg) has been shown to increase the volume of fetal fluids in gestating swine. Aquaporins (AQPs), known as water channel proteins, are essential for embryonic growth and development. It was not known if Arg mediates water transport through AQPs in porcine conceptus trophectoderm (pTr2) cells. METHODS: pTr2 cells derived from pregnant gilts on day 12 of gestation were cultured in customized Arg-free Dulbecco's modified Eagle's Ham medium (DMEM) supplemented with either 0.00, 0.25, or 0.50 mM Arg. RESULTS: Arg treatment increased water transport and the expression of AQP3, which was abundantly expressed in pTr2 cells at both the mRNA and protein levels. Arg also increased the expression of iNOS and the synthesis of nitric oxide (NO) in pTr2 cells. The presence of Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME; an inhibitor of NO synthase) significantly attenuated the Arg-induced expression of AQP3. Furthermore, 0.50 mM Arg increased the concentrations of cAMP and the abundances of phosphorylated cAMP-dependent protein kinase A (PKA), phosphorylated PKA α/ß/γ, and phosphorylated CREB. These effects of Arg were mimicked by Forskolin (a cell-permeable activator of adenylyl cyclase), but inhibited by H-89 (an inhibitor of cAMP-dependent protein kinase). CONCLUSIONS: The results of this study demonstrate that Arg regulates AQP3 expression and promotes water transport in pTr2 cells through NO- and cAMP-dependent signaling pathways.


Assuntos
Aquaporinas , Óxido Nítrico , Animais , Aquaporina 3/genética , Aquaporinas/genética , Arginina/metabolismo , Arginina/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Óxido Nítrico/metabolismo , Gravidez , Sus scrofa/metabolismo , Suínos , Água/metabolismo
4.
Biol Reprod ; 106(5): 888-899, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35134855

RESUMO

Given recent reports of expression of postnatal mineral transport regulators at the maternal-conceptus interface during the peri-implantation period, this study tested the hypothesis that progesterone (P4) and interferon tau (IFNT) regulate phosphate, calcium, and vitamin D signaling in the ovine endometrium. Mature Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on day 7 of the estrous cycle. Ewes received daily intramuscular injections of 50 mg of P4 in corn oil vehicle and 75 mg of progesterone receptor antagonist (RU486) in corn oil from days 8 to 15, and twice-daily intrauterine injections of either control proteins (CX) or IFNT (25 µg/uterine horn/day) from days 11 to 15 resulting in four treatment groups: P4 + CX; P4 + IFNT; RU486 + P4 + CX; and RU486 + P4 + IFNT. On day 16, ewes were hysterectomized. RU486 + P4 + CX treated ewes had lower concentrations of 25 (OH) D in plasma than P4 + CX treated ewes (P < 0.05). Endometria from ewes treated with IFNT had greater expression of FGF23 (P < 0.01), S100A9 (P < 0.05), and S100A12 (P = 0.05) mRNAs and lower expression of ADAM10 mRNA (P < 0.01) than of ewes treated with CX proteins. Expression of FGF23 mRNA was greater in endometria of ewes that received RU486 + P4 + IFNT than in ewes that received RU486 + P4 + CX (hormone × protein interaction, P < 0.05). The expression of S100G mRNA was greater in endometria of ewes that received P4 + IFNT compared to ewes that received RU486 + P4 + IFNT (P < 0.05; hormone × protein interaction, P < 0.01). These data implicate P4 and IFNT in the regulation of phosphate, calcium, and vitamin D signaling during the peri-implantation period of pregnancy and provide a platform for continued mechanistic investigations.


Assuntos
Interferon Tipo I , Progesterona , Animais , Cálcio/metabolismo , Óleo de Milho/metabolismo , Óleo de Milho/farmacologia , Endométrio/metabolismo , Feminino , Interferon Tipo I/metabolismo , Mifepristona/farmacologia , Fosfatos/metabolismo , Fosfatos/farmacologia , Gravidez , Proteínas da Gravidez , Progesterona/metabolismo , Progesterona/farmacologia , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ovinos , Carneiro Doméstico , Vitamina D/farmacologia
5.
Biol Reprod ; 106(5): 865-878, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35098299

RESUMO

Progesterone (P4) and interferon tau (IFNT) are important for establishment and maintenance of pregnancy in ruminants. Agmatine and polyamines (putrescine, spermidine, and spermine) have important roles in the survival, growth, and development of mammalian conceptuses. This study tested the hypothesis that P4 and/or IFNT stimulate the expression of genes and proteins involved in the metabolism and transport of polyamines in the ovine endometrium. Rambouillet ewes (n = 24) were surgically fitted with intrauterine catheters on Day 7 of the estrous cycle. They received daily intramuscular injections of 50 mg P4 in corn oil vehicle and/or 75-mg progesterone receptor antagonist (RU486) in corn oil vehicle from Days 8-15, and twice daily intrauterine injections (25 µg/uterine horn/day) of either control serum proteins (CX) or IFNT from Days 11-15, resulting in four treatment groups: (i) P4 + CX; (ii) P4 + IFNT; (iii) RU486 + P4 + CX; or (iv) RU486 + P4 + IFNT. On Day 16, ewes were hysterectomized. The total amounts of arginine, citrulline, ornithine, agmatine, and putrescine in uterine flushings were affected (P < 0.05) by P4 and/or IFNT. P4 increased endometrial expression of SLC22A2 (P < 0.01) and SLC22A3 (P < 0.05) mRNAs. IFNT affected endometrial expression of MAT2B (P < 0.001), SAT1 (P < 0.01), and SMOX (P < 0.05) mRNAs, independent of P4. IFNT increased the abundance of SRM protein in uterine luminal (LE), superficial glandular (sGE), and glandular epithelia (GE), as well as MAT2B protein in uterine LE and sGE. These results indicate that P4 and IFNT act synergistically to regulate the expression of key genes required for cell-specific metabolism and transport of polyamines in the ovine endometrium during the peri-implantation period of pregnancy.


Assuntos
Agmatina , Interferon Tipo I , Agmatina/metabolismo , Agmatina/farmacologia , Animais , Óleo de Milho/metabolismo , Endométrio/metabolismo , Feminino , Interferon Tipo I/metabolismo , Mifepristona , Poliaminas/metabolismo , Gravidez , Proteínas da Gravidez , Progesterona/metabolismo , Proteínas/metabolismo , Putrescina , RNA Mensageiro/metabolismo , Ovinos , Carneiro Doméstico , Útero/metabolismo
6.
Front Biosci (Landmark Ed) ; 27(1): 33, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35090338

RESUMO

BACKGROUND: Increasing the dietary provision of L-arginine to pregnant swine beginning at Day 14 of gestation enhances embryonic survival, but the underlying mechanisms are largely unknown. OBJECTIVE: This study determined the effects of dietary supplementation with 0.8% L-arginine to gilts between Days 14 and 25 of gestation on the global expression of genes in their placentae. METHODS: Between Days 14 and 24 of gestation, gilts were fed 2 kg of a corn- and soybean meal-based diet (containing 12.0% crude protein and 0.70% Arg) supplemented with 0.8% L-arginine or without L-arginine (0.0%; with 1.64% L-alanine as the isonitrogenous control). On Day 25 of gestation, 30 min after the consumption of their top dressing containing 8 g L-arginine or 16.4 g L-alanine, gilts underwent hysterectomy to obtain placentae, which were snap-frozen in liquid nitrogen. Total RNAs were extracted from the frozen tissues and used for microarray analysis based on the 44-K Agilent porcine gene platform. RESULTS: L-Arginine supplementation affected placental expression of 575 genes, with 146 genes being up-regulated and 429 genes being down-regulated. These differentially expressed genes play important roles in nutrient metabolism, polyamine production, protein synthesis, proteolysis, angiogenesis, immune development, anti-oxidative responses, and adhesion force between the chorioallantoic membrane and the endometrial epithelium, as well as functions of insulin, transforming growth factor beta, and Notch signaling pathways. CONCLUSION: Dietary supplementation with L-arginine plays an important role in regulating placental gene expression in gilts. Our findings help to elucidate mechanisms responsible for the beneficial effect of L-arginine in improving placental growth and embryonic/fetal survival in swine.


Assuntos
Arginina , Placenta , Animais , Arginina/metabolismo , Arginina/farmacologia , Dieta , Suplementos Nutricionais , Feminino , Expressão Gênica , Análise em Microsséries , Placenta/metabolismo , Gravidez , Sus scrofa , Suínos
7.
Amino Acids ; 54(2): 193-204, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741684

RESUMO

Dietary supplementation with 0.4 or 0.8% L-arginine (Arg) to gilts between days 14 and 25 of gestation enhances embryonic survival and vascular development in placentae; however, the underlying mechanisms are largely unknown. This study tested the hypothesis that Arg supplementation stimulated placental expression of mRNAs and proteins that enhance angiogenesis, including endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF), placental growth factor (PGF), GTP cyclohydrolase-I (GTP-CH1), ornithine decarboxylase (ODC1), and vascular endothelial growth factor receptors 1 and 2 (VEGFR1 and VEGFR2). Beginning on the day of breeding, gilts were fed daily 2 kg of a corn-soybean meal-based diet supplemented with 0.0 (control), 0.4, or 0.8% Arg. On day 25 of gestation, gilts were hysterectomized to obtain uteri and conceptuses for histochemical and biochemical analyses. eNOS and VEGFR1 proteins were localized to endothelial cells of maternal uterine blood vessels and to the uterine luminal epithelium, respectively. Compared with the control, dietary supplementation with 0.4 or 0.8% Arg increased (P < 0.05) the amounts of nitrite plus nitrate (NOx; oxidation products of NO) and polyamines in allantoic and amniotic fluids, concentrations of NOx, tetrahydrobiopterin (BH4, an essential cofactor for all NOS isoforms) and polyamines in placentae, as well as placental protein abundances of GTP-CH1 (the key enzyme for BH4 production) and ODC1 (the key enzyme for polyamine synthesis). Placental  mRNA levels for GTP-CH1, eNOS, PGF, VEGF, and VEGFR2 increased in response to both 0.4% and 0.8% Arg supplementation. Collectively, these results indicate that dietary Arg supplementation to gilts between days 14 and 25 of pregnancy promotes placental angiogenesis by increasing the expression of mRNAs and proteins for angiogenic factors as well as NO and polyamine syntheses.


Assuntos
Proteínas Angiogênicas , Placenta , Proteínas Angiogênicas/metabolismo , Animais , Arginina/metabolismo , Arginina/farmacologia , Suplementos Nutricionais , Células Endoteliais/metabolismo , Feminino , Placenta/metabolismo , Fator de Crescimento Placentário/metabolismo , Poliaminas/metabolismo , Gravidez , Sus scrofa/metabolismo , Suínos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
8.
Amino Acids ; 53(8): 1287-1295, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34241695

RESUMO

This study tested the hypothesis that dietary L-arginine (Arg) supplementation to pregnant gilts enhanced the expression of water channel proteins [aquaporins (AQPs)] in their placentae and endometria. Gilts were fed twice daily 1 kg of a corn and soybean meal-based diet supplemented with 0.0%, 0.4%, or 0.8% Arg between Days 14 and 25 of gestation. On Days 25 and 60 of gestation, gilts were hysterectomized to obtain placentae and endometria. On Day 25 of gestation, supplementation with 0.4% Arg increased (P < 0.05) the abundance of placental AQP9 protein, whereas supplementation with 0.8% Arg increased (P < 0.05) placental AQP1 and AQP9 proteins, compared with controls. On Day 60 of gestation, supplementation with 0.4% Arg increased (P < 0.05) endometrial AQP1 protein, whereas supplementation with 0.8% Arg increased (P < 0.05) endometrial AQP5 and AQP9 proteins. Supplementation with 0.8% Arg increased the endometrial expression of AQP1, AQP5, and AQP9 proteins located in the luminal epithelium and glandular epithelium of endometria, and placental transport of 3H2O. Collectively, these results indicate that dietary Arg supplementation stimulates the expression of selective AQPs in porcine placenta and endometria, thereby enhancing water transport from mother to fetus and expanding the chorioallantoic membranes during the period of placentation.


Assuntos
Aquaporinas/metabolismo , Arginina/administração & dosagem , Suplementos Nutricionais , Endométrio/metabolismo , Placenta/metabolismo , Animais , Feminino , Gravidez , Suínos
9.
J Anim Sci ; 96(12): 5035-5051, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30445424

RESUMO

Arginine (Arg) has traditionally not been considered as a deficient nutrient in diets for gestating or lactating swine due to the assumption that these animals can synthesize sufficient amounts of Arg to meet their physiological needs. The lack of full knowledge about Arg nutrition has contributed to suboptimal efficiency of pork production. Over the past 25 yr, there has been growing interest in Arg metabolism in the pig, which is an agriculturally important species and a useful model for studying human biology. Arginine is a highly abundant amino acid in tissues of pigs, a major amino acid in allantoic fluid, and a key regulator of gene expression, cell signaling, and antioxidative reactions. Emerging evidence suggests that dietary supplementation with 0.5% to 1% Arg maintains gut health and prevents intestinal dysfunction in weanling piglets, while enhancing their growth performance and survival. Also, the inclusion of 1% Arg in diets is required to maximize skeletal muscle accretion and feed efficiency in growing pigs, whereas dietary supplementation with 1% Arg reduces muscle loss in endotoxin-challenged pigs. Furthermore, supplementing 0.83% Arg to corn- and soybean meal-based diets promotes embryonic/fetal survival in swine and milk production by lactating sows. Thus, an adequate amount of dietary Arg as a quantitatively major nutrient is necessary to support maximum growth, lactation, and reproduction performance of swine. These results also have important implications for improving the nutrition and health of humans and other animals.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Arginina/administração & dosagem , Lactação/fisiologia , Prenhez , Suínos/fisiologia , Animais , Arginina/fisiologia , Feminino , Gravidez
10.
Exp Biol Med (Maywood) ; 243(6): 525-533, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29466875

RESUMO

Maternal nutrition during gestation, especially dietary protein intake, is a key determinant in embryonic survival, growth, and development. Low maternal dietary protein intake can cause embryonic losses, intra-uterine growth restriction, and reduced postnatal growth due to a deficiency in specific amino acids that are important for cell metabolism and function. Of note, high maternal dietary protein intake can also result in intra-uterine growth restriction and embryonic death, due to amino acid excesses, as well as the toxicity of ammonia, homocysteine, and H2S that are generated from amino acid catabolism. Maternal protein nutrition has a pronounced impact on fetal programming and alters the expression of genes in the fetal genome. As a precursor to the synthesis of molecules (e.g. nitric oxide, polyamines, and creatine) with cell signaling and metabolic functions, L-arginine (Arg) is essential during pregnancy for growth and development of the conceptus. With inadequate maternal dietary protein intake, Arg and other important amino acids are deficient in mother and fetus. Dietary supplementation of Arg during gestation has been effective in improving embryonic survival and development of the conceptus in many species, including humans, pigs, sheep, mice, and rats. Both the balance among amino acids and their quantity are critical for healthy pregnancies and offspring. Impact statement This review aims at: highlighting adverse effects of elevated levels of ammonia in mother or fetus on embryonic/fetal survival, growth, and development; helping nutritionists and practitioners to understand the mechanisms whereby elevated levels of ammonia in mother or fetus results in embryonic/fetal death, growth restriction, and developmental abnormalities; and bringing, into the attention of nutritionists and practitioners, the problems of excess or inadequate dietary intake of protein or amino acids on pregnancy outcomes in animals and humans. The article provides new, effective means to improve embryonic/fetal survival and growth in mammals.


Assuntos
Proteínas Alimentares/metabolismo , Desenvolvimento Fetal , Sobrevida , Animais , Suplementos Nutricionais , Humanos
11.
Mol Reprod Dev ; 84(9): 870-882, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28390193

RESUMO

The mammalian placenta is essential for supplying nutrients (e.g., amino acids and water) and oxygen from the mother to fetus and for removing fetal metabolites (e.g., ammonia and CO2 ) from fetus to mother. Thus, placental growth and development are determinants of fetal survival, growth, and development. Indeed, low birth weight is closely associated with reduced placental growth. Providing gestating gilts or sows with dietary supplementation of arginine and glutamine, increases placental growth (including vascular growth), improves embryonic/fetal growth and survival, and reduces the large variation in birth weight among litters. These two amino acids serve as building blocks for tissue protein as well as substrates for the production of polyamines and nitric oxide, which stimulate DNA and protein synthesis and angiogenesis and vascular growth in the placenta. These recent findings not only greatly advance the field of mammalian amino acid metabolism and nutrition, but also provide practical, mechanism-based methods to enhance reproductive efficiency in swine. These results may also help improve embryonic/fetal survival and growth in other livestock species (e.g., sheep and cattle) and in humans.


Assuntos
Aminoácidos/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/fisiologia , Placenta/metabolismo , Animais , Feminino , Gravidez , Suínos
12.
Adv Exp Med Biol ; 843: 23-52, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25956294

RESUMO

The dialogue between the mammalian conceptus (embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients, collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of Developmental Origins of Health and Disease (DOHAD). Although mechanisms responsible for differential growth and development of the conceptus resulting in DOHAD phenomena remain unclear, epigenetic events involving methylation of DNA are likely mechanisms. Histotroph includes serine and methionine which can contribute to the one carbon pool, and arginine, lysine and histidine residues which may be targets of methylation. It is also clear that supplementing the diet with arginine enhances fetal-placental development in rodents, swine and humans through mechanisms that remain to be elucidated. However, molecules secreted by conceptuses such as interferon tau in ruminants, estrogens and interferons in pigs and chorionic gonadotrophin, along with progesterone, regulate expression of genes for nutrient transporters. Understanding mechanisms whereby select nutrients regulate expression of genes in cell signaling pathways critical to conceptus development, implantation and placentation is required for improving successful establishment and maintenance of pregnancy in mammals.


Assuntos
Aminoácidos/metabolismo , Implantação do Embrião/genética , Epigênese Genética , Placenta/metabolismo , Útero/metabolismo , Animais , Gonadotropina Coriônica/metabolismo , Metilação de DNA , Embrião de Mamíferos/metabolismo , Feminino , Feto/metabolismo , Humanos , Circulação Placentária , Gravidez , Progesterona/metabolismo , Transdução de Sinais
13.
Amino Acids ; 46(2): 375-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24337831

RESUMO

Embryonic loss is a major problem in mammals, but there are few effective ways to prevent it. Using a porcine model, we determined effects of dietary L-arginine supplementation between days 14 and 25 of gestation on embryonic growth and survival. Gilts were checked daily for estrus with boars in the morning and bred at onset of the second estrus and 12 h later (the time of breeding = day 0 of gestation). Between days 14 and 25 of gestation, 15 gilts/treatment were housed individually and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0, 0.4, or 0.8 % L-arginine. All diets were made isonitrogenous by addition of L-alanine. On day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Compared with controls, dietary supplementation with 0.4 or 0.8 % L-arginine increased (P ≤ 0.05) arginine concentrations in maternal plasma, total volume of amniotic fluid; total amounts of arginine in allantoic and amniotic fluids; total amounts of fructose and most amino acids in amniotic fluid; placental growth; and the number of viable fetuses per litter by 2. The numbers of total fetuses, fetal weight, corpora lutea, volume of allantoic fluid, maternal circulating levels of progesterone and estrogen, or total amounts of hormones in allantoic fluid did not differ among the three treatment groups. Reproductive performance of gilts did not differ between the 0.4 and 0.8 % L-arginine groups. Thus, dietary supplementation with 0.4 or 0.8 % L-arginine between days 14 and 25 of gestation enhances embryonic/fetal survival in swine.


Assuntos
Arginina/administração & dosagem , Suplementos Nutricionais , Desenvolvimento Embrionário/efeitos dos fármacos , Alantoide/metabolismo , Aminoácidos/sangue , Líquido Amniótico/metabolismo , Animais , Arginina/farmacocinética , Feminino , Hormônios Esteroides Gonadais/sangue , Placenta/metabolismo , Gravidez , Sus scrofa , Artéria Uterina/metabolismo
14.
Amino Acids ; 45(2): 241-56, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23732998

RESUMO

Embryonic loss and intrauterine growth restriction (IUGR) are significant problems in humans and other animals. Results from studies involving pigs and sheep have indicated that limited uterine capacity and placental insufficiency are major factors contributing to suboptimal reproduction in mammals. Our discovery of the unusual abundance of the arginine family of amino acids in porcine and ovine allantoic fluids during early gestation led to the novel hypothesis that arginine plays an important role in conceptus (embryo and extra-embryonic membranes) development. Arginine is metabolized to ornithine, proline, and nitric oxide, with each having important physiological functions. Nitric oxide is a vasodilator and angiogenic factor, whereas ornithine and proline are substrates for uterine and placental synthesis of polyamines that are key regulators of gene expression, protein synthesis, and angiogenesis. Additionally, arginine activates the mechanistic (mammalian) target of rapamycin cell signaling pathway to stimulate protein synthesis in the placenta, uterus, and fetus. Thus, dietary supplementation with 0.83 % L-arginine to gilts consuming 2 kg of a typical gestation diet between either days 14 and 28 or between days 30 and 114 of pregnancy increases the number of live-born piglets and litter birth weight. Similar results have been reported for gestating rats and ewes. In sheep, arginine also stimulates development of fetal brown adipose tissue. Furthermore, oral administration of arginine to women with IUGR has been reported to enhance fetal growth. Collectively, enhancement of uterine as well as placental growth and function through dietary arginine supplementation provides an effective solution to improving embryonic and fetal survival and growth.


Assuntos
Arginina/administração & dosagem , Arginina/metabolismo , Desenvolvimento Embrionário , Retardo do Crescimento Fetal/metabolismo , Animais , Suplementos Nutricionais , Embrião de Mamíferos , Feminino , Humanos , Camundongos , Estado Nutricional , Poliaminas/metabolismo , Gravidez , Ratos , Carneiro Doméstico/embriologia , Transdução de Sinais
15.
Amino Acids ; 40(4): 1053-63, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20697752

RESUMO

Proline plays important roles in protein synthesis and structure, metabolism (particularly the synthesis of arginine, polyamines, and glutamate via pyrroline-5-carboxylate), and nutrition, as well as wound healing, antioxidative reactions, and immune responses. On a per-gram basis, proline plus hydroxyproline are most abundant in collagen and milk proteins, and requirements of proline for whole-body protein synthesis are the greatest among all amino acids. Therefore, physiological needs for proline are particularly high during the life cycle. While most mammals (including humans and pigs) can synthesize proline from arginine and glutamine/glutamate, rates of endogenous synthesis are inadequate for neonates, birds, and fish. Thus, work with young pigs (a widely used animal model for studying infant nutrition) has shown that supplementing 0.0, 0.35, 0.7, 1.05, 1.4, and 2.1% proline to a proline-free chemically defined diet containing 0.48% arginine and 2% glutamate dose dependently improved daily growth rate and feed efficiency while reducing concentrations of urea in plasma. Additionally, maximal growth performance of chickens depended on at least 0.8% proline in the diet. Likewise, dietary supplementation with 0.07, 0.14, and 0.28% hydroxyproline (a metabolite of proline) to a plant protein-based diet enhanced weight gains of salmon. Based on its regulatory roles in cellular biochemistry, proline can be considered as a functional amino acid for mammalian, avian, and aquatic species. Further research is warranted to develop effective strategies of dietary supplementation with proline or hydroxyproline to benefit health, growth, and development of animals and humans.


Assuntos
Hidroxiprolina/metabolismo , Prolina/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Arginina/metabolismo , Aves , Galinhas , Colágeno/química , Colágeno/metabolismo , Dieta , Suplementos Nutricionais/análise , Peixes , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Lactente , Recém-Nascido , Leite/química , Leite/metabolismo , Necessidades Nutricionais , Pirróis/metabolismo , Suínos
16.
J Nutr ; 140(6): 1111-6, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20392885

RESUMO

In this study, we determined the effects of L-arginine supplementation during early pregnancy on embryonic/fetal survival and growth in gilts. Gilts were housed individually in pens and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0, 0.4, or 0.8% L-arginine (wt:wt) between d 0 and 25 of gestation (10 gilts/treatment). The diets were made isonitrogenous by addition of appropriate amounts of L-alanine. At d 25 of gestation, gilts were fed L-alanine or L-arginine and hysterectomized 30 min later to obtain uteri and conceptuses (embryos and associated fetal membranes and fluids). Dietary supplementation with 0.4 or 0.8% L-arginine enhanced (P < 0.05) its concentrations in maternal plasma (64 and 98%, respectively) as well as the vascularity of chorionic and allantoic membranes, compared with the control group. Reproductive performance [numbers of corpora lutea (CL) and fetuses, placental and fetal weights, and embryonic mortality] did not differ between the 0.4% Arg and control groups. However, supplementation with 0.8% L-arginine decreased (P < 0.05) uterine weight (-20%), total number of fetuses (-24%), CL number (-17%), total fetal weight (-34%), total volume of allantoic and amniotic fluids (-34 to 42%), concentrations of progesterone in maternal plasma (-33%), as well as total amounts of progesterone (-35%), estrone (-40%), and estrone sulfate (-37%) in allantoic fluid, compared with the control group. These results indicate that dietary supplementation with 0.8% L-arginine between d 0 and 25 of gestation, while increasing placental vascularity, adversely affects the reproductive performance of gilts.


Assuntos
Arginina/administração & dosagem , Arginina/farmacologia , Tamanho da Ninhada de Vivíparos/efeitos dos fármacos , Suínos/fisiologia , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Masculino , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Gravidez , Progesterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA