Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metabolites ; 10(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486030

RESUMO

After blood donation, the red blood cells (RBCs) for transfusion are generally isolated by centrifugation and then filtrated and supplemented with additive solution. The consecutive changes of the extracellular environment participate to the occurrence of storage lesions. In this study, the hypothesis is that restoring physiological levels of uric and ascorbic acids (major plasmatic antioxidants) might correct metabolism defects and protect RBCs from the very beginning of the storage period, to maintain their quality. Leukoreduced CPD-SAGM RBC concentrates were supplemented with 416 µM uric acid and 114 µM ascorbic acid and stored during six weeks at 4 °C. Different markers, i.e., haematological parameters, metabolism, sensitivity to oxidative stress, morphology and haemolysis were analyzed. Quantitative metabolomic analysis of targeted intracellular metabolites demonstrated a direct modification of several metabolite levels following antioxidant supplementation. No significant differences were observed for the other markers. In conclusion, the results obtained show that uric and ascorbic acids supplementation partially prevented the metabolic shift triggered by plasma depletion that occurs during the RBC concentrate preparation. The treatment directly and indirectly sustains the antioxidant protective system of the stored RBCs.

2.
Biotechnol Bioeng ; 114(12): 2907-2919, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28853155

RESUMO

The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L-1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis.


Assuntos
Acetona/metabolismo , Butanóis/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Análise do Fluxo Metabólico/métodos , Riboflavina/biossíntese , Acetato de Sódio/metabolismo , Acetona/isolamento & purificação , Reatores Biológicos/microbiologia , Butanóis/isolamento & purificação , Clostridium acetobutylicum/crescimento & desenvolvimento , Simulação por Computador , Meios de Cultura/metabolismo , Etanol/isolamento & purificação , Fermentação , Modelos Biológicos , Riboflavina/isolamento & purificação
3.
PLoS One ; 8(1): e53898, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23382859

RESUMO

The metabolism of potato (Solanum tuberosum) roots constitutively over- and underexpressing hexokinase (HK, EC 2.7.1.1) was examined. An 11-fold variation in HK activity resulted in altered root growth, with antisense roots growing better than sense roots. Quantification of sugars, organic acids and amino acids in transgenic roots demonstrated that the manipulation of HK activity had very little effect on the intracellular pools of these metabolites. However, adenylate and free Pi levels were negatively affected by an increase in HK activity. The flux control coefficient of HK over the phosphorylation of glucose was measured for the first time in plants. Its value varied with HK level. It reached 1.71 at or below normal HK activity value and was much lower (0.32) at very high HK levels. Measurements of glycolytic flux and O(2) uptake rates demonstrated that the differences in glucose phosphorylation did not affect significantly glycolytic and respiratory metabolism. We hypothesized that these results could be explained by the existence of a futile cycle between the pools of hexose-Ps and carbohydrates. This view is supported by several lines of evidence. Firstly, activities of enzymes capable of catalyzing these reactions were detected in roots, including a hexose-P phosphatase. Secondly, metabolic tracer experiments using (14)C-glucose as precursor showed the formation of (14)C-fructose and (14)C-sucrose. We conclude that futile cycling of hexose-P could be partially responsible for the differences in energetic status in roots with high and low HK activity and possibly cause the observed alterations in growth in transgenic roots. The involvement of HK and futile cycles in the control of glucose-6P metabolism is discussed.


Assuntos
Glucose/metabolismo , Hexoquinase/metabolismo , Plantas Geneticamente Modificadas , Solanum tuberosum , Metabolismo Energético , Hexosefosfatos/metabolismo , Fosforilação , Raízes de Plantas/enzimologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Solanum tuberosum/enzimologia , Solanum tuberosum/metabolismo , Ciclização de Substratos
4.
Biotechnol Bioeng ; 110(3): 924-35, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23055265

RESUMO

A kinetic-metabolic model of Solanum tuberosum hairy roots is presented in the interest of understanding the effect on the plant cell metabolism of a 90% decrease in cytosolic triosephosphate isomerase (cTPI, EC 5.3.1.1) expression by antisense RNA. The model considers major metabolic pathways including glycolysis, pentose phosphate pathway, and TCA cycle, as well as anabolic reactions leading to lipids, nucleic acids, amino acids, and structural hexoses synthesis. Measurements were taken from shake flask cultures for six extracellular nutrients (sucrose, fructose, glucose, ammonia, nitrate, and inorganic phosphate) and 15 intracellular compounds including sugar phosphates (G6P, F6P, R5P, E4P) and organic acids (PYR, aKG, SUCC, FUM, MAL) and the six nutrients. From model simulations and experimental data it can be noted that plant cell metabolism redistributes metabolic fluxes to compensate for the cTPI decrease, leading to modifications in metabolites levels. Antisense roots showed increased exchanges between the pentose phosphate pathway and the glycolysis, an increased oxygen uptake and growth rate.


Assuntos
Citosol/enzimologia , Raízes de Plantas/enzimologia , Solanum tuberosum/enzimologia , Triose-Fosfato Isomerase/metabolismo , Meios de Cultura/química , Citosol/química , Citosol/metabolismo , Técnicas de Silenciamento de Genes , Raízes de Plantas/química , Raízes de Plantas/metabolismo , RNA Antissenso/genética , Solanum tuberosum/química , Solanum tuberosum/metabolismo , Triose-Fosfato Isomerase/genética
5.
BMC Cell Biol ; 13: 18, 2012 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-22762146

RESUMO

BACKGROUND: The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Incubating bone marrow (BM) precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg) metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. RESULTS: Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln) and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK) was activated during MDSC maturation in GM-CSF and IL-6-treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was decreased in MSC-1 cells when L-Arg metabolizing enzymes were inhibited. Finally, inhibition of AMPK activity by the specific inhibitor Compound C (Comp-C) resulted in the inhibition of L-Arg metabolizing enzyme activity and abolished MDSCs immunosuppressive activity. CONCLUSIONS: We anticipate that the inhibition of AMPK and the control of metabolic fluxes may be considered as a novel therapeutic target for the recovery of the immunosurveillance process in cancer-bearing hosts.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Interleucina-6/farmacologia , Células Mieloides/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Arginina/metabolismo , Células da Medula Óssea/citologia , Células Cultivadas , Glucose/metabolismo , Glutamina/metabolismo , Glicólise , Humanos , Terapia de Imunossupressão , Células Mieloides/citologia , Células Mieloides/metabolismo
6.
Immunobiology ; 217(8): 808-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22656888

RESUMO

Major advances in dissecting mechanisms of NO-induced down-regulation of the anti-tumour specific T-cell function have been accomplished during the last decade. In this work, we studied the effects of a NO donor (AT38) on leukaemic Jurkat cell bioenergetics. Culturing Jurkat cells in the presence of AT38 triggered irreversible inhibition of cell respiration, led to the depletion of 50% of the intracellular ATP content and induced the arrest of cell proliferation and the loss of cell viability. Although a deterioration of the overall metabolic activity has been observed, glycolysis was stimulated, as revealed by the increase of glucose uptake and lactate accumulation rates as well as by the up-regulation of GLUT-1 and PFK-1 mRNA levels. In the presence of NO, cell ATP was rapidly consumed by energy-requiring apoptosis mechanisms; under a glucose concentration of about 12.7mM, cell death was switched from apoptosis into necrosis. Exposure of Jurkat cells to DMSO (1%, v/v), SA and AT55, the non-NO releasing moiety of AT38, failed to modulate neither cell proliferation nor bioenergetics. Thus, as for all NSAIDs, beneficial effects of AT38 on tumour regression are accompanied by the suppression of the immune system. We then showed that pre-treating Jurkat cells with low concentration of cyclosporine A, a blocker of the mitochondrial transition pore, attenuates AT38-induced inhibition of cell proliferation and suppresses cell death. Finally, we have studied and compared the effects of nitrite and nitrate on Jurkat cells to those of NO and we are providing evidence that nitrate, which is considered as a biologically inert anion, has a concentration and time-dependent immunosuppressive potential.


Assuntos
Metabolismo Energético/imunologia , Óxido Nítrico/imunologia , Trifosfato de Adenosina/imunologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Respiração Celular/imunologia , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Glucose/imunologia , Glucose/metabolismo , Transportador de Glucose Tipo 1/genética , Glicólise/efeitos dos fármacos , Glicólise/imunologia , Humanos , Células Jurkat , Lactatos/imunologia , Lactatos/metabolismo , Leucemia de Células T/genética , Leucemia de Células T/imunologia , Leucemia de Células T/metabolismo , Necrose/imunologia , Nitratos/farmacologia , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Fosfofrutoquinase-1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nitrito de Sódio/farmacologia , Fatores de Tempo
7.
J Biotechnol ; 152(1-2): 43-8, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21262283

RESUMO

Growing tumours have acquired several mechanisms to resist to immune recognition. Among these strategies, myeloid-derived suppressor cells (MDSCs) contribute to tumour escape by suppressing T-cell specific anti-tumoural functions. The development of therapies that could specifically inhibit MDSC maturation, recruitment, accumulation and immunosuppressive functions is thus of great interest. This requires the identification of valuable biomarkers of MDSC behaviour in vitro. As for immune cells, whose energetic state is known as a biomarker of their functionality, we have characterized in vitro the metabolic and energetic behaviour of MSC-1 cells, an immortalized cell line derived from mouse MDSCs and used as model cell line. Combined results from in vitro(31)P-NMR with living cells and HPLC-MS analyses from cell extracts allowed to identify two distinct bioenergetic steady-states that coincided with exponential and stationary growth phases. While the adenylate energy charge remained constant throughout the culture duration, both the percentage of total pyrimidines, the UTP-to-ATP and PME (phosphomonoesters)-to-NTP ratios were higher at the exponential growth phase compared to the plateau phase, suggesting metabolically active cells and the production of growth-related molecules. Conversely, the NTP ratio increased at the entry of the stationary phase revealing the deterioration of the global bioenergetic status and the arrest of anabolic processes.


Assuntos
Células Mieloides/citologia , Células Mieloides/metabolismo , Animais , Reatores Biológicos , Linhagem Celular , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Metabolismo Energético , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Microscopia Eletrônica de Varredura , Células Mieloides/ultraestrutura , Óxidos de Nitrogênio/metabolismo , Fosfolipídeos/metabolismo
8.
Biotechnol Prog ; 18(5): 1003-9, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12363351

RESUMO

A two-liquid-phase bioreactor was designed to extract indole alkaloids from Catharanthus roseus hairy roots with silicon oil. Partition studies between silicon oil and culture medium showed that the silicon oil did not alter the availability of nutrients. The affinity of tabersonine and löchnericine for silicon oil is nine times higher than for the aqueous phase. Cultures were elicited with 25 mg/L of jasmonic acid. The growth of the hairy roots was not significantly modified by the presence of silicon oil. The overall specific yields of tabersonine and löchnericine were increased by 100-400% and 14-200%, respectively, with the use of silicon oil in nonelicited control cultures. In elicited cultures, these values were 10-55% for tabersonine and 20-65% for löchnericine. Serpentine was never found in the silicon oil. All measured alkaloids' specific yields were higher using silicon oil and elicitation, suggesting that the silicon oil, while acting as a metabolic sink for tabersonine and löchnericine, was efficient in increasing metabolic fluxes of the secondary metabolism pathways.


Assuntos
Reatores Biológicos , Catharanthus/metabolismo , Alcaloides Indólicos/metabolismo , Indóis , Extratos Vegetais/metabolismo , Raízes de Plantas/metabolismo , Quinolinas , Silicones/metabolismo , Alcaloides/biossíntese , Meios de Cultura , Alcaloides de Triptamina e Secologanina/metabolismo , Sensibilidade e Especificidade , Alcaloides de Vinca/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA