Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 10(11): e0143113, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26581109

RESUMO

Diacylglycerol acyltransferases (DGAT) are involved in the acylation of sn-1,2-diacylglycerol. Palm kernel oil, extracted from Elaeis guineensis (oil palm) seeds, has a high content of medium-chain fatty acids mainly lauric acid (C12:0). A putative E. guineensis diacylglycerol acyltransferase gene (EgDGAT1-1) is expressed at the onset of lauric acid accumulation in the seed endosperm suggesting that it is a determinant of medium-chain triacylglycerol storage. To test this hypothesis, we thoroughly characterized EgDGAT1-1 activity through functional complementation of a Yarrowia lipolytica mutant strain devoid of neutral lipids. EgDGAT1-1 expression is sufficient to restore triacylglycerol accumulation in neosynthesized lipid droplets. A comparative functional study with Arabidopsis thaliana DGAT1 highlighted contrasting substrate specificities when the recombinant yeast was cultured in lauric acid supplemented medium. The EgDGAT1-1 expressing strain preferentially accumulated medium-chain triacylglycerols whereas AtDGAT1 expression induced long-chain triacylglycerol storage in Y. lipolytica. EgDGAT1-1 localized to the endoplasmic reticulum where TAG biosynthesis takes place. Reestablishing neutral lipid accumulation in the Y. lipolytica mutant strain did not induce major reorganization of the yeast microsomal proteome. Overall, our findings demonstrate that EgDGAT1-1 is an endoplasmic reticulum DGAT with preference for medium-chain fatty acid substrates, in line with its physiological role in palm kernel. The characterized EgDGAT1-1 could be used to promote medium-chain triacylglycerol accumulation in microbial-produced oil for industrial chemicals and cosmetics.


Assuntos
Arecaceae/enzimologia , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Yarrowia/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/enzimologia , Cromatografia em Camada Fina , Sequência Conservada , Diacilglicerol O-Aciltransferase/química , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Microssomos/enzimologia , Anotação de Sequência Molecular , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Recombinação Genética/genética , Homologia de Sequência de Aminoácidos , Transformação Genética , Triglicerídeos/metabolismo
2.
Planta ; 242(1): 53-68, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25820267

RESUMO

MAIN CONCLUSION: The protein, phospholipid and sterol composition of the oil body surface from the seeds of two rapeseed genotypes was compared in order to explain their contrasted oil extractability. In the mature seeds of oleaginous plants, storage lipids accumulate in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids surrounded by a phospholipid monolayer in which structural proteins are embedded. The physical stability of OBs is a consequence of the interactions between proteins and phospholipids. A detailed study of OB characteristics in mature seeds as well as throughout seed development was carried out on two contrasting rapeseed genotypes Amber and Warzanwski. These two accessions were chosen because they differ dramatically in (1) crushing ability, (2) oil extraction yield and, (3) the stability of purified OBs. Warzanwski has higher crushing ability, better oil extraction yield and less stable purified OBs than Amber. OB morphology was investigated in situ using fluorescence microscopy, transmission electron microscopy and pulsed field gradient NMR. During seed development, OB diameter first increased and then decreased 30 days after pollination in both Amber and Warzanwski embryos. In mature seeds, Amber OBs were significantly smaller. The protein, phospholipid and sterol composition of the hemi-membrane was compared between the two accessions. Amber OBs were enriched with H-oleosins and steroleosins, suggesting increased coverage of the OB surface consistent with their higher stability. The nature and composition of phospholipids and sterols in Amber OBs suggest that the hemi-membrane would have a more rigid structure than that of Warzanwski OBs.


Assuntos
Brassica rapa/embriologia , Brassica rapa/genética , Gotículas Lipídicas/metabolismo , Óleos de Plantas/isolamento & purificação , Sementes/anatomia & histologia , Sementes/metabolismo , Brassica rapa/anatomia & histologia , Eletroforese em Gel Bidimensional , Genótipo , Espectroscopia de Ressonância Magnética , Fosfolipídeos/metabolismo , Fitosteróis/metabolismo , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/ultraestrutura , Tocoferóis/metabolismo
3.
Proteomics ; 13(12-13): 1836-49, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23589365

RESUMO

Oleaginous seeds store lipids in specialized structures called oil bodies (OBs). These organelles consist of a core of neutral lipids bound by proteins embedded in a phospholipid monolayer. OB proteins are well conserved in plants and have long been grouped into only two categories: structural proteins or enzymes. Recent work, however, which identified other classes of proteins associated with OBs, clearly shows that this classification is obsolete. Proteomics-mediated OB protein identification is facilitated in plants for which the genome is sequenced and annotated. However, it is not clear whether this knowledge can be dependably transposed to less well-characterized plants, including the well-established commercial sources of seed oil as well as the many others being proposed as novel sources for biodiesel, especially in Africa and Asia. Toward an update of the current data available on OB proteins this review discusses (i) the specific difficulties for proteomic studies of organelles; (ii) a 2012 census of the proteins found in seed OBs from various crops; (iii) the oleosin composition of OBs and their role in organelle stability; (iv) PTM of OB proteins as an emerging field of investigation; and finally we describe the emerging model of the OB proteome from oilseed crops.


Assuntos
Produtos Agrícolas , Óleos de Plantas , Proteínas de Plantas , Sementes , Processamento de Proteína Pós-Traducional , Proteoma
4.
J Agric Food Chem ; 60(28): 6994-7004, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22720877

RESUMO

In this study, oil bodies (OBs) from Gevuina avellana (OBs-G) and Madia sativa (OBs-M) were isolated and characterized. Microscopic inspection revealed that the monolayer on OB-G was thinner compared to that on OB-M. Cytometric profiles regarding size, complexity, and staining for the two OB sources were similar. Fatty acid to protein mass ratio in both OBs was near 29, indicating high lipid enrichment. OBs-G and OBs-M showed a strong electrostatic repulsion over wide ranges of pH (5.5-9.5) and NaCl concentration (0-150 mM). Proteins displaying highly conserved sequences (steroleosins and aquaporins) in the plant kingdom were identified. The presence of oleosins was immunologically revealed using antibodies raised against Arabidopsis thaliana oleosins. OBs-G and OBs-M exhibited no significant cytotoxicity against the cells. This is the first report about the isolation and characterization of OBs-G and OBs-M, and this knowledge could be used for novel applications of these raw materials.


Assuntos
Asteraceae , Óleos de Plantas/química , Proteaceae , Sementes/ultraestrutura , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Lipídeos/análise , Concentração Osmolar , Proteínas de Plantas/análise , Sementes/química
5.
J Plant Physiol ; 168(17): 2015-20, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21803444

RESUMO

Despite the importance of seed oil bodies (OBs) as enclosed compartments for oil storage, little is known about lipid and protein accumulation in OBs during seed formation. OBs from rapeseed (Brassica napus) consist of a triacylglycerol (TAG) core surrounded by a phospholipid monolayer embedded with integral proteins which confer high stability to OBs in the mature dry seed. In the present study, we investigated lipid and protein accumulation patterns throughout seed development (from 5 to 65 days after pollination [DAP]) both in the whole seed and in purified OBs. Deposition of the major proteins (oleosins, caleosins and steroleosins) into OBs was assessed through (i) gene expression pattern, (ii) proteomics analysis, and (iii) protein immunodetection. For the first time, a sequential deposition of integral OB proteins was established. Accumulation of oleosins and caleosins was observed starting from early stages of seed development (12-17 DAP), while steroleosins accumulated later (~25 DAP) onwards.


Assuntos
Brassica napus/metabolismo , Óleos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Brassica napus/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Fosfolipídeos/metabolismo , Proteínas de Plantas/genética , Proteômica , Sementes/crescimento & desenvolvimento , Fatores de Tempo , Triglicerídeos/metabolismo
6.
Proteomics ; 11(16): 3430-4, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21751352

RESUMO

Plant seed oil bodies, subcellular lipoprotein inclusions providing storage reserves, are composed of a neutral lipid core surrounded by a phospholipid monolayer with several integrated proteins that play a significant role in stabilization of the particles and probably also in lipid mobilization. Oil bodies' proteins are generally very hydrophobic, due to the long uncharged sequences anchoring them into the lipid core, which makes them extremely difficult to handle and to digest successfully. Although oil bodies have been intensively studied during last decades, not all their proteins have been identified yet. To overcome the problems connected with their identification, a method based on SDS-PAGE, in-gel digestion and LC-MS/MS analysis was used. Digestion was carried out with trypsin and chymotrypsin, single or in combination, which increased significantly the number of identified peptides, namely the hydrophobic ones. Thanks to this methodology it was possible to achieve an extensive coverage of proteins studied, to analyze their N-terminal modifications and moreover, to detect four new oil bodies' protein isoforms, which demonstrates the complexity of oil bodies' protein composition.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Fragmentos de Peptídeos/análise , Isoformas de Proteínas/química , Sementes/química , Vacúolos/química , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Arabidopsis/metabolismo , Cromatografia Líquida , Quimotripsina/química , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Óleos de Plantas/química , Isoformas de Proteínas/classificação , Isoformas de Proteínas/isolamento & purificação , Sementes/metabolismo , Análise de Sequência de Proteína , Tripsina/química
7.
Plant Physiol Biochem ; 49(3): 352-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21251844

RESUMO

The seed oil of Jatropha curcas has been proposed as a source of biodiesel. In plants, seed oil is stored in subcellular organelles called oil bodies (OBs), which are stabilized by proteins. Proteome composition of the J. curcas OBs revealed oleosins as the major component and additional proteins similar to those in other oil seed plants. Three J. curcas oleosins were isolated and characterized at the gene, transcript and protein level. They all contained the characteristic proline knot domain and were each present as a single copy in the genome. The smallest, L-form JcOle3 contained an intron. Isolation of its promoter revealed seed-specific cis-regulatory motifs among others. Spatio-temporal transcript expression of J. curcas oleosins was largely similar to that in other oil seed plants. Immunoassay with antibodies against an Arabidopsis oleosin or against JcOle3, on seed proteins extracted by different approaches, revealed JcOle3 oligomers. Alleles of JcOle3 and single nucleotide polymorphisms (SNPs) in its intron were identified in J. curcas accessions, species and hybrids. Identified alleles and SNPs could serve as markers in phylogenetic or breeding studies.


Assuntos
Genes de Plantas , Jatropha/genética , Filogenia , Óleos de Plantas , Proteínas de Plantas/genética , Sementes/metabolismo , Alelos , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Marcadores Genéticos , Genoma , Íntrons , Jatropha/metabolismo , Organelas/metabolismo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteoma
8.
C R Biol ; 331(10): 746-54, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18926488

RESUMO

Many organisms among the different kingdoms store reserve lipids in discrete subcellular organelles called lipid bodies. In plants, lipid bodies can be found in seeds but also in fruits (olives, ...), and in leaves (plastoglobules). These organelles protect plant lipid reserves against oxidation and hydrolysis until seed germination and seedling establishment. They can be stabilized by specific structural proteins, namely the oleosins and caleosins, which act as natural emulsifiers. Considering the putative role of some of them in controlling the size of lipid bodies, these proteins may constitute important targets for seed improvement both in term of oil seed yield and optimization of technological processes for extraction of oil and storage proteins. We present here an overview of the data on the structure of these proteins, which are scarce, and sometimes contradictory and on their functional roles.


Assuntos
Metabolismo dos Lipídeos , Organelas/metabolismo , Proteínas de Plantas/fisiologia , Sementes/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Germinação/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Óleos de Plantas/metabolismo , Proteínas de Plantas/química , Conformação Proteica , Estrutura Terciária de Proteína , Sementes/crescimento & desenvolvimento , Relação Estrutura-Atividade , Triglicerídeos/metabolismo
9.
J Agric Food Chem ; 55(24): 10008-15, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17966978

RESUMO

Oleosins are hydrophobic proteins from oleaginous seeds, surrounding and stabilizing oil bodies. They are known to display interesting interfacial properties. Specific sera were raised against four different A. thaliana oleosins and used in dot-blot assays for oleosin quantification. These assays were used to set up extraction of oleosins from A. thaliana seeds. One mixture of chloroform/methanol gave optimal oleosin extraction. Extracted proteins represented 9% of seed proteins and were identified by immunoblot and proteomic analyses. Oleosins accounted for 79% of the extracted proteins. This simple one-step procedure allows selective extraction and concentration of oleosins from seeds without tedious oil body purification. Oleosin extract was indeed used to demonstrate the presence of the rare oleosin S5 in mature seeds. Moreover, this method will be useful to investigate the potential use of oleosins as emulsifier and to question their possible allergenicity.


Assuntos
Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Arabidopsis/química , Clorofórmio/química , Immunoblotting , Metanol/química , Óleos de Plantas/metabolismo , Sementes/química , Solubilidade
10.
Plant Physiol Biochem ; 42(6): 501-9, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15246063

RESUMO

Till now, only scattered data are available in the literature, which describes the protein content of plant oil bodies. Especially, the proteins closely associated with the model plant Arabidopsis thaliana oil bodies have never been previously purified and characterized. Oil bodies have been purified using flotation techniques, combined with incubations under high salt concentration, in the presence of detergents and urea in order to remove non-specifically trapped proteins. The identity and integrity of the oil bodies have been characterized. Oil bodies exhibited hydrodynamic diameters close to 2.6 microm, and a ratio fatty acid-protein content near 20. The proteins composing these organelles were extracted, separated by SDS-PAGE, digested by trypsin, and their peptides were subsequently analyzed by nano-chromatography-mass spectrometry (nano-LC-MS/MS). This led to the identification of a limited number of proteins: four different oleosins, ATS1, a protein homologous to calcium binding protein, a 11-beta-hydroxysteroid dehydrogenase-like protein, a probable aquaporin and a glycosylphosphatidylinositol-anchored protein with no known function. The two last proteins were till now never identified in plant oil bodies. Structural proteins (oleosins) represented up to 79% of oil body proteins and the 18.5 kDa oleosin was the most abundant among them.


Assuntos
Proteínas de Arabidopsis/análise , Arabidopsis/química , Lipídeos/química , Organelas/química , Sementes/química , Arabidopsis/ultraestrutura , Fracionamento Celular , Eletroforese em Gel de Poliacrilamida , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA