Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Theor Appl Genet ; 137(5): 106, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622441

RESUMO

KEY MESSAGE: A new resistance locus acting against the potato cyst nematode Globodera pallida was mapped to chromosome VI in the diploid wild potato species Solanum spegazzinii CPC 7195. The potato cyst nematodes (PCN) Globodera pallida and Globodera rostochiensis are economically important potato pests in almost all regions where potato is grown. One important management strategy involves deployment through introgression breeding into modern cultivars of new sources of naturally occurring resistance from wild potato species. We describe a new source of resistance to G. pallida from wild potato germplasm. The diploid species Solanum spegazzinii Bitter accession CPC 7195 shows resistance to G. pallida pathotypes Pa1 and Pa2/3. A cross and first backcross of S. spegazzinii with Solanum tuberosum Group Phureja cultivar Mayan Gold were performed, and the level of resistance to G. pallida Pa2/3 was determined in progeny clones. Bulk-segregant analysis (BSA) using generic mapping enrichment sequencing (GenSeq) and genotyping-by-sequencing were performed to identify single-nucleotide polymorphisms (SNPs) that are genetically linked to the resistance, using S. tuberosum Group Phureja clone DM1-3 516 R44 as a reference genome. These SNPs were converted into allele-specific PCR assays, and the resistance was mapped to an interval of roughly 118 kb on chromosome VI. This newly identified resistance, which we call Gpa VIlspg, can be used in future efforts to produce modern cultivars with enhanced and broad-spectrum resistances to the major pests and pathogens of potato.


Assuntos
Solanum tuberosum , Solanum , Tylenchoidea , Animais , Solanum tuberosum/genética , Solanum/genética , Doenças das Plantas/genética , Melhoramento Vegetal
2.
Mol Plant Pathol ; 22(5): 495-507, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33709540

RESUMO

TAXONOMY: Phylum Nematoda; class Chromadorea; order Rhabditida; suborder Tylenchina; infraorder Tylenchomorpha; superfamily Tylenchoidea; family Heteroderidae; subfamily Heteroderinae; Genus Globodera. BIOLOGY: Potato cyst nematodes (PCN) are biotrophic, sedentary endoparasitic nematodes. Invasive (second) stage juveniles (J2) hatch from eggs in response to the presence of host root exudates and subsequently locate and invade the host. The nematodes induce the formation of a large, multinucleate syncytium in host roots, formed by fusion of up to 300 root cell protoplasts. The nematodes rely on this single syncytium for the nutrients required to develop through a further three moults to the adult male or female stage. This extended period of biotrophy-between 4 and 6 weeks in total-is almost unparalleled in plant-pathogen interactions. Females remain at the root while adult males revert to the vermiform body plan of the J2 and leave the root to locate and fertilize the female nematodes. The female body forms a cyst that contains the next generation of eggs. HOST RANGE: The host range of PCN is limited to plants of the Solanaceae family. While the most economically important hosts are potato (Solanum tuberosum), tomato (Solanum lycopersicum), and aubergine (Solanum melongena), over 170 species of Solanaceae are thought to be potential hosts for PCN (Sullivan et al., 2007). DISEASE SYMPTOMS: Symptoms are similar to those associated with nutrient deficiency, such as stunted growth, yellowing of leaves and reduced yields. This absence of specific symptoms reduces awareness of the disease among growers. DISEASE CONTROL: Resistance genes (where available in suitable cultivars), application of nematicides, crop rotation. Great effort is put into reducing the spread of PCN through quarantine measures and use of certified seed stocks. USEFUL WEBSITES: Genomic information for PCN is accessible through WormBase ParaSite.


Assuntos
Genoma Helmíntico/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/fisiologia , Animais , Resistência à Doença/genética , Feminino , Genômica , Especificidade de Hospedeiro/genética , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Masculino , Doenças das Plantas/prevenção & controle , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Raízes de Plantas/genética , Raízes de Plantas/imunologia , Raízes de Plantas/parasitologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Tylenchoidea/genética
3.
Genes (Basel) ; 11(12)2020 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260722

RESUMO

Although the use of natural resistance is the most effective management approach against the potato cyst nematode (PCN) Globodera pallida, the existence of pathotypes with different virulence characteristics constitutes a constraint towards this goal. Two resistance sources, GpaV (from Solanum vernei) and H3 from S. tuberosum ssp. andigena CPC2802 (from the Commonwealth Potato Collection) are widely used in potato breeding programmes in European potato industry. However, the use of resistant cultivars may drive strong selection towards virulence, which allows the increase in frequency of virulent alleles in the population and therefore, the emergence of highly virulent nematode lineages. This study aimed to identify Avirulence (Avr) genes in G. pallida populations selected for virulence on the above resistance sources, and the genomic impact of selection processes on the nematode. The selection drive in the populations was found to be specific to their genetic background. At the genomic level, 11 genes were found that represent candidate Avr genes. Most of the variant calls determining selection were associated with H3-selected populations, while many of them seem to be organised in genomic islands facilitating selection evolution. These phenotypic and genomic findings combined with histological studies performed revealed potential mechanisms underlying selection in G. pallida.


Assuntos
Nematoides , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Animais , Resistência à Doença , Nematoides/genética , Nematoides/patogenicidade , Virulência
4.
Genome Biol ; 17(1): 124, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27286965

RESUMO

BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.


Assuntos
Genoma de Protozoário , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Tylenchoidea/patogenicidade , Animais , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Transferência Genética Horizontal , Ilhas Genômicas , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Estágios do Ciclo de Vida , Motivos de Nucleotídeos , Matrizes de Pontuação de Posição Específica , Sítios de Splice de RNA , Splicing de RNA , Transcriptoma , Tylenchoidea/crescimento & desenvolvimento , Virulência/genética
5.
Mol Ecol ; 24(23): 5842-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26607216

RESUMO

Distinct populations of the potato cyst nematode (PCN) Globodera pallida exist in the UK that differ in their ability to overcome various sources of resistance. An efficient method for distinguishing between populations would enable pathogen-informed cultivar choice in the field. Science and Advice for Scottish Agriculture (SASA) annually undertake national DNA diagnostic tests to determine the presence of PCN in potato seed and ware land by extracting DNA from soil floats. These DNA samples provide a unique resource for monitoring the distribution of PCN and further interrogation of the diversity within species. We identify a region of mitochondrial DNA descriptive of three main groups of G. pallida present in the UK and adopt a metagenetic approach to the sequencing and analysis of all SASA samples simultaneously. Using this approach, we describe the distribution of G. pallida mitotypes across Scotland with field-scale resolution. Most fields contain a single mitotype, one-fifth contain a mix of mitotypes, and less than 3% contain all three mitotypes. Within mixed fields, we were able to quantify the relative abundance of each mitotype across an order of magnitude. Local areas within mixed fields are dominated by certain mitotypes and indicate towards a complex underlying 'pathoscape'. Finally, we assess mitotype distribution at the level of the individual cyst and provide evidence of 'hybrids'. This study provides a method for accurate, quantitative and high-throughput typing of up to one thousand fields simultaneously, while revealing novel insights into the national genetic variability of an economically important plant parasite.


Assuntos
Variação Genética , Genética Populacional , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Animais , Código de Barras de DNA Taxonômico , DNA de Helmintos/genética , DNA Mitocondrial/genética , Dados de Sequência Molecular , Doenças das Plantas/parasitologia , Escócia , Solo
6.
BMC Genomics ; 15: 923, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25342461

RESUMO

BACKGROUND: The potato cyst nematode Globodera pallida has biotrophic interactions with its host. The nematode induces a feeding structure - the syncytium - which it keeps alive for the duration of the life cycle and on which it depends for all nutrients required to develop to the adult stage. Interactions of G. pallida with the host are mediated by effectors, which are produced in two sets of gland cells. These effectors suppress host defences, facilitate migration and induce the formation of the syncytium. RESULTS: The recent completion of the G. pallida genome sequence has allowed us to identify the effector complement from this species. We identify 128 orthologues of effectors from other nematodes as well as 117 novel effector candidates. We have used in situ hybridisation to confirm gland cell expression of a subset of these effectors, demonstrating the validity of our effector identification approach. We have examined the expression profiles of all effector candidates using RNAseq; this analysis shows that the majority of effectors fall into one of three clusters of sequences showing conserved expression characteristics (invasive stage nematode only, parasitic stage only or invasive stage and adult male only). We demonstrate that further diversity in the effector pool is generated by alternative splicing. In addition, we show that effectors target a diverse range of structures in plant cells, including the peroxisome. This is the first identification of effectors from any plant pathogen that target this structure. CONCLUSION: This is the first genome scale search for effectors, combined to a life-cycle expression analysis, for any plant-parasitic nematode. We show that, like other phylogenetically unrelated plant pathogens, plant parasitic nematodes deploy hundreds of effectors in order to parasitise plants, with different effectors required for different phases of the infection process.


Assuntos
Genômica , Proteínas de Helminto/genética , Doenças das Plantas/parasitologia , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Tylenchoidea/fisiologia , Processamento Alternativo , Animais , Feminino , Proteínas de Helminto/metabolismo , Espaço Intracelular/parasitologia , Estágios do Ciclo de Vida/genética , Masculino , Solanum tuberosum/citologia , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/metabolismo
7.
PLoS Pathog ; 10(9): e1004391, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25255291

RESUMO

Sedentary endoparasitic nematodes are obligate biotrophs that modify host root tissues, using a suite of effector proteins to create and maintain a feeding site that is their sole source of nutrition. Using assumptions about the characteristics of genes involved in plant-nematode biotrophic interactions to inform the identification strategy, we provide a description and characterisation of a novel group of hyper-variable extracellular effectors termed HYP, from the potato cyst nematode Globodera pallida. HYP effectors comprise a large gene family, with a modular structure, and have unparalleled diversity between individuals of the same population: no two nematodes tested had the same genetic complement of HYP effectors. Individuals vary in the number, size, and type of effector subfamilies. HYP effectors are expressed throughout the biotrophic stages in large secretory cells associated with the amphids of parasitic stage nematodes as confirmed by in situ hybridisation. The encoded proteins are secreted into the host roots where they are detectable by immunochemistry in the apoplasm, between the anterior end of the nematode and the feeding site. We have identified HYP effectors in three genera of plant parasitic nematodes capable of infecting a broad range of mono- and dicotyledon crop species. In planta RNAi targeted to all members of the effector family causes a reduction in successful parasitism.


Assuntos
Proteínas de Helminto/genética , Interações Hospedeiro-Parasita , Doenças das Plantas/parasitologia , Solanum tuberosum/genética , Tylenchoidea/genética , Sequência de Aminoácidos , Animais , Parede Celular/metabolismo , Clonagem Molecular , Biologia Computacional , Variações do Número de Cópias de DNA , DNA de Helmintos/genética , Proteínas de Helminto/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Immunoblotting , Hibridização In Situ , Estágios do Ciclo de Vida/genética , Dados de Sequência Molecular , Família Multigênica , Células Vegetais/metabolismo , Doenças das Plantas/genética , Raízes de Plantas/química , Raízes de Plantas/parasitologia , Infecções por Secernentea/genética , Infecções por Secernentea/metabolismo , Infecções por Secernentea/parasitologia , Homologia de Sequência de Aminoácidos , Solanum tuberosum/citologia , Solanum tuberosum/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/metabolismo
8.
Methods Mol Biol ; 1127: 17-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24643549

RESUMO

Pathogens produce effectors that manipulate the host to the benefit of the pathogen. These effectors are often secreted proteins that are upregulated during the early phases of infection. These properties can be used to identify candidate effectors from genomes and transcriptomes of pathogens. Here we describe commonly used bioinformatic approaches that (1) allow identification of genes encoding predicted secreted proteins within a genome and (2) allow the identification of genes encoding predicted secreted proteins that are upregulated at important stages of the life cycle. Other approaches for bioinformatic identification of effector candidates, including OrthoMCL analysis to identify expanded gene families, are also described.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Regulação da Expressão Gênica , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Animais , Análise por Conglomerados , Bases de Dados de Proteínas , Perfilação da Expressão Gênica , Nematoides/genética , Nematoides/fisiologia , Doenças das Plantas/parasitologia , Análise de Sequência de RNA , Solanum tuberosum/parasitologia
9.
Mol Plant Pathol ; 13(9): 1120-34, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22863280

RESUMO

The potato cyst nematodes (PCNs) Globodera pallida and Globodera rostochiensis are important parasites of potato. PCNs undergo complex biotrophic interactions with their hosts that involve gene expression changes in both the nematode and the host plant. The aim of this study was to determine key genes that are differentially expressed in Globodera pallida life cycle stages and during the initiation of the feeding site in susceptible and partially resistant potato genotypes. For this purpose, two microarray experiments were designed: (i) a comparison of eggs, infective second-stage juveniles (J2s) and sedentary parasitic-stage J2s (SJ2); (ii) a comparison of SJ2s at 8 days after inoculation (DAI) in the susceptible cultivar (Desirée) and two partially resistant lines. The results showed differential expression of G. pallida genes during the stages studied, including previously characterized effectors. In addition, a large number of genes changed their expression between SJ2s in the susceptible cultivar and those infecting partially resistant lines; the number of genes with modified expression was lower when the two partially resistant lines were compared. Moreover, a histopathological study was performed at several time points (7, 14 and 30 DAI) and showed the similarities between both partially resistant lines with a delay and degeneration in the formation of the syncytia in comparison with the susceptible cultivar. Females at 30 DAI in partially resistant lines showed a delay in their development in comparison with those in the susceptible cultivar.


Assuntos
Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Estágios do Ciclo de Vida/genética , Solanum tuberosum/genética , Solanum tuberosum/parasitologia , Tylenchoidea/crescimento & desenvolvimento , Tylenchoidea/genética , Animais , Feminino , Regulação da Expressão Gênica , Genes de Helmintos/genética , Genótipo , Família Multigênica , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solanum tuberosum/citologia
10.
Mol Plant Pathol ; 10(6): 815-28, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19849787

RESUMO

In this article, we describe the analysis of over 9000 expressed sequence tags (ESTs) from cDNA libraries obtained from various life cycle stages of Globodera pallida. We have identified over 50 G. pallida effectors from this dataset using bioinformatics analysis, by screening clones in order to identify secreted proteins up-regulated after the onset of parasitism and using in situ hybridization to confirm the expression in pharyngeal gland cells. A substantial gene family encoding G. pallida SPRYSEC proteins has been identified. The expression of these genes is restricted to the dorsal pharyngeal gland cell. Different members of the SPRYSEC family of proteins from G. pallida show different subcellular localization patterns in plants, with some localized to the cytoplasm and others to the nucleus and nucleolus. Differences in subcellular localization may reflect diverse functional roles for each individual protein or, more likely, variety in the compartmentalization of plant proteins targeted by the nematode. Our data are therefore consistent with the suggestion that the SPRYSEC proteins suppress host defences, as suggested previously, and that they achieve this through interaction with a range of host targets.


Assuntos
Etiquetas de Sequências Expressas , Proteínas de Helminto/fisiologia , Solanum tuberosum/parasitologia , Tylenchoidea/metabolismo , Tylenchoidea/patogenicidade , Animais , Biologia Computacional , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Tylenchoidea/genética
11.
Phytopathology ; 99(2): 194-202, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19245333

RESUMO

Plant-parasitic cyst nematodes secrete cell wall modifying proteins during their invasion of host plants. In this study, we used a monoclonal antibody to immunopurify and to sequence the N terminus of the most abundant cellulases in stylet secretions of preparasitic juveniles of Globodera rostochiensis. The N-terminal amino acid sequence perfectly matched the sequence of an expressed sequence tag of two nearly identical genes, named Gr-eng3 and Gr-eng4, which show relatively low similarity with the previously identified Gr-eng1 and Gr-eng2 (i.e., 62% similarity and 42% identity). The recombinantly produced proteins from Gr-eng3 and Gr-eng4 demonstrated specific activity on carboxymethylcellulose, indicating that these genes encode active cellulases. To date, the cellulases in cyst nematodes are comprised of three possible domain structure variants with different types of ancillary domains at the C terminus of the glycosyl hydrolase family 5 (GHF5) domain. We used Bayesian inference to show that the phylogeny of the GHF5 domain based on currently available data suggest that the extant nematode cellulases arose through reshuffling of the GHF5 domain with different types of ancillary domains as relatively independent units. Knocking-down Gr-eng3 and Gr-eng4 using RNA interference resulted in a reduction of nematode infectivity by 57%. Our observations show that the reduced infectivity of the nematodes can be attributed to poor penetration of the host's root system at the onset of parasitism.


Assuntos
Celulases/genética , Celulases/metabolismo , Nematoides/enzimologia , Sequência de Aminoácidos , Animais , Celulases/química , Dados de Sequência Molecular , Filogenia , Doenças das Plantas/parasitologia , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Solanum tuberosum/parasitologia
12.
Mol Plant Microbe Interact ; 18(7): 621-5, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16042007

RESUMO

RNA interference (RNAi) has been used widely as a tool for examining gene function and a method that allows its use with plant-parasitic nematodes recently has been described. Here, we use a modified method to analyze the function of secreted beta-1,4, endoglucanases of the potato cyst nematode Globodera rostochiensis, the first in vivo functional analysis of a pathogenicity protein of a plant-parasitic nematode. Knockout of the beta-1,4, endoglucanases reduced the ability of the nematodes to invade roots. We also use RNAi to show that gr-ams-1, a secreted protein of the main sense organs (the amphids), is essential for host location.


Assuntos
Proteínas de Helminto/genética , Interferência de RNA , Solanum tuberosum/parasitologia , Tylenchoidea/genética , Tylenchoidea/patogenicidade , Animais , Sequência de Bases , Celulase/genética , DNA de Helmintos/genética , Genes de Helmintos , Doenças das Plantas/parasitologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA