Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Genet ; 55(9): 1579-1588, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640880

RESUMO

Potato (Solanum tuberosum) and tomato (Solanum lycopersicon) crops suffer severe losses to late blight caused by the oomycete pathogen Phytophthora infestans. Solanum americanum, a relative of potato and tomato, is globally distributed and most accessions are highly blight resistant. We generated high-quality reference genomes of four S. americanum accessions, resequenced 52 accessions, and defined a pan-NLRome of S. americanum immune receptor genes. We further screened for variation in recognition of 315P. infestans RXLR effectors in 52 S. americanum accessions. Using these genomic and phenotypic data, we cloned three NLR-encoding genes, Rpi-amr4, R02860 and R04373, that recognize cognate P. infestans RXLR effectors PITG_22825 (AVRamr4), PITG_02860 and PITG_04373. These genomic resources and methodologies will support efforts to engineer potatoes with durable late blight resistance and can be applied to diseases of other crops.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Solanum/genética , Solanum tuberosum/genética , Phytophthora infestans/genética , Solanum lycopersicum/genética , Genômica , Produtos Agrícolas
2.
Molecules ; 27(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36432202

RESUMO

The beauty industry is actively searching for solutions to prevent skin aging. Some of the crucial elements protecting cells from the aging process are telomere shortening, telomerase expression, cell senescence, and homeostasis of the redox system. Modification of these factors using natural antioxidants is an appealing way to support healthy skin aging. Therefore, in this study, we sought to investigate the antiaging efficacy of a specific combination of four botanical extracts (pomegranate, sweet orange, Cistanche and Centella asiatica) with proven antioxidant properties. To this end, normal human dermal fibroblasts were used as a cell model and the following studies were performed: cell proliferation was established by means of the MTT assay and the intracellular ROS levels in stress-induced premature senescence fibroblasts; telomere length measurement was performed under standard cell culture conditions using qPCR and under oxidative stress conditions using a variation of the Q-FISH technique; telomerase activity was examined by means of Q-TRAP; and AGE quantification was completed by means of ELISA assay in UV-irradiated fibroblasts. As a result, the botanical blend significantly reversed the H2O2-induced decrease in cell viability and reduced H2O2-induced ROS. Additionally, the presence of the botanical ingredient reduced the telomere shortening rate in both stressed and non-stressed replicating fibroblasts, and under oxidative stress conditions, the fibroblasts presented a higher median and 20th percentile telomere length, as well as a lower percentage of short telomeres (<3 Kbp) compared with untreated fibroblasts. Furthermore, the ingredient transiently increased relative telomerase activity after 24 h and prevented the accumulation of UVR-induced glycated species. The results support the potential use of this four-component plant-based ingredient as an antiaging agent.


Assuntos
Envelhecimento da Pele , Telomerase , Humanos , Telomerase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Telômero/metabolismo , Peróxido de Hidrogênio/farmacologia , Senescência Celular , Antioxidantes/farmacologia
3.
Mol Plant ; 15(9): 1457-1469, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35915586

RESUMO

Species of the genus Phytophthora, the plant killer, cause disease and reduce yields in many crop plants. Although many Resistance to Phytophthora infestans (Rpi) genes effective against potato late blight have been cloned, few have been cloned against other Phytophthora species. Most Rpi genes encode nucleotide-binding domain, leucine-rich repeat-containing (NLR) immune receptor proteins that recognize RXLR (Arg-X-Leu-Arg) effectors. However, whether NLR proteins can recognize RXLR effectors from multiple Phytophthora species has rarely been investigated. Here, we identified a new RXLR-WY effector AVRamr3 from P. infestans that is recognized by Rpi-amr3 from a wild Solanaceae species Solanum americanum. Rpi-amr3 associates with AVRamr3 in planta. AVRamr3 is broadly conserved in many different Phytophthora species, and the recognition of AVRamr3 homologs by Rpi-amr3 activates resistance against multiple Phytophthora pathogens, including the tobacco black shank disease and cacao black pod disease pathogens P. parasitica and P. palmivora. Rpi-amr3 is thus the first characterized resistance gene that acts against P. parasitica or P. palmivora. These findings suggest a novel path to redeploy known R genes against different important plant pathogens.


Assuntos
Phytophthora infestans , Solanum tuberosum , Solanum , Resistência à Doença/genética , Genes de Plantas , Phytophthora infestans/metabolismo , Doenças das Plantas/genética , Solanum/genética , Solanum tuberosum/genética
4.
Nutrients ; 14(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35011093

RESUMO

The current fast-moving, hectic lifestyle has increased the number of individuals worldwide with difficulties in managing stress, which in turn is also affecting their sleep quality. Therefore, the objective of the current study was to assess a natural plant-based dietary supplement comprised of lemon verbena (Lippia citriodora) extract, purified in phenylpropanoids, in alleviating stress and improving quality of sleep. A double-blind, placebo-controlled study was conducted for 8 weeks, followed by a 4-week washout period. Both validated questionnaires and functional tests were performed during the study, whereas questionnaires were used after the washout. As a result, the group taking the lemon verbena extract significantly reduced their perception of stress after 8 weeks, which was corroborated by a significant decrease in cortisol levels. After the washout period, the subjects reported to present even lower stress levels, due to the lasting effect of the ingredient. As for sleep quality, the subjects taking the supplement reported feeling better rested, with a stronger effect observed in women. Sleep tracking using a wearable device revealed that the supplement users improved their times in the deeper stages of sleep, specifically their percentage of time in deep sleep and REM. In conclusion, lemon verbena extract purified in phenylpropanoids is revealed as a natural solution to help individuals to improve their stress and sleep quality.


Assuntos
Ansiolíticos , Lippia/química , Extratos Vegetais/uso terapêutico , Qualidade do Sono , Estresse Psicológico/tratamento farmacológico , Adulto , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Glucosídeos/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Fenóis/administração & dosagem , Placebos , Folhas de Planta/química , Espanha , Inquéritos e Questionários
5.
New Phytol ; 232(3): 1368-1381, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34339518

RESUMO

Knowledge of the evolutionary processes which govern pathogen recognition is critical to understanding durable disease resistance. We determined how Phytophthora infestans effector PiAVR2 is recognised by evolutionarily distinct resistance proteins R2 and Rpi-mcq1. We employed yeast two-hybrid, co-immunoprecipitation, virus-induced gene silencing, transient overexpression, and phosphatase activity assays to investigate the contributions of BSL phosphatases to R2- and Rpi-mcq1-mediated hypersensitive response (R2 HR and Rpi-mcq1 HR, respectively). Silencing PiAVR2 target BSL1 compromises R2 HR. Rpi-mcq1 HR is compromised only when BSL2 and BSL3 are silenced. BSL1 overexpression increases R2 HR and compromises Rpi-mcq1. However, overexpression of BSL2 or BSL3 enhances Rpi-mcq1 and compromises R2 HR. Okadaic acid, which inhibits BSL phosphatase activity, suppresses both recognition events. Moreover, expression of a BSL1 phosphatase-dead (PD) mutant suppresses R2 HR, whereas BSL2-PD and BSL3-PD mutants suppress Rpi-mcq1 HR. R2 interacts with BSL1 in the presence of PiAVR2, but not with BSL2 and BSL3, whereas no interactions were detected between Rpi-mcq1 and BSLs. Thus, BSL1 activity and association with R2 determine recognition of PiAVR2 by R2, whereas BSL2 and BSL3 mediate Rpi-mcq1 perception of PiAVR2. R2 and Rpi-mcq1 utilise distinct mechanisms to detect PiAVR2 based on association with different BSLs, highlighting central roles of these effector targets for both disease and disease resistance.


Assuntos
Phytophthora infestans , Solanum tuberosum , Resistência à Doença/genética , Doenças das Plantas , Proteínas de Plantas/genética
6.
Nat Plants ; 7(2): 198-208, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33574576

RESUMO

Late blight caused by Phytophthora infestans greatly constrains potato production. Many Resistance (R) genes were cloned from wild Solanum species and/or introduced into potato cultivars by breeding. However, individual R genes have been overcome by P. infestans evolution; durable resistance remains elusive. We positionally cloned a new R gene, Rpi-amr1, from Solanum americanum, that encodes an NRC helper-dependent CC-NLR protein. Rpi-amr1 confers resistance in potato to all 19 P. infestans isolates tested. Using association genomics and long-read RenSeq, we defined eight additional Rpi-amr1 alleles from different S. americanum and related species. Despite only ~90% identity between Rpi-amr1 proteins, all confer late blight resistance but differentially recognize Avramr1 orthologues and paralogues. We propose that Rpi-amr1 gene family diversity assists detection of diverse paralogues and alleles of the recognized effector, facilitating durable resistance against P. infestans.


Assuntos
Mapeamento Cromossômico , Clonagem Molecular/métodos , Resistência à Doença/genética , Phytophthora infestans/patogenicidade , Doenças das Plantas/genética , Imunidade Vegetal/genética , Solanum/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genômica , Melhoramento Vegetal/métodos
7.
Mol Plant Pathol ; 22(3): 317-333, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389783

RESUMO

Ralstonia solanacearum causes bacterial wilt disease in many plant species. Type III-secreted effectors (T3Es) play crucial roles in bacterial pathogenesis. However, some T3Es are recognized by corresponding disease resistance proteins and activate plant immunity. In this study, we identified the R. solanacearum T3E protein RipAZ1 (Ralstonia injected protein AZ1) as an avirulence determinant in the black nightshade species Solanum americanum. Based on the S. americanum accession-specific avirulence phenotype of R. solanacearum strain Pe_26, 12 candidate avirulence T3Es were selected for further analysis. Among these candidates, only RipAZ1 induced a cell death response when transiently expressed in a bacterial wilt-resistant S. americanum accession. Furthermore, loss of ripAZ1 in the avirulent R. solanacearum strain Pe_26 resulted in acquired virulence. Our analysis of the natural sequence and functional variation of RipAZ1 demonstrated that the naturally occurring C-terminal truncation results in loss of RipAZ1-triggered cell death. We also show that the 213 amino acid central region of RipAZ1 is sufficient to induce cell death in S. americanum. Finally, we show that RipAZ1 may activate defence in host cell cytoplasm. Taken together, our data indicate that the nucleocytoplasmic T3E RipAZ1 confers R. solanacearum avirulence in S. americanum. Few avirulence genes are known in vascular bacterial phytopathogens and ripAZ1 is the first one in R. solanacearum that is recognized in black nightshades. This work thus opens the way for the identification of disease resistance genes responsible for the specific recognition of RipAZ1, which can be a source of resistance against the devastating bacterial wilt disease.


Assuntos
Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Solanum/microbiologia , Proteínas de Bactérias/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , Folhas de Planta , Ralstonia solanacearum/patogenicidade , Virulência
8.
Mol Plant Pathol ; 21(11): 1502-1512, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32935441

RESUMO

Potato late blight, caused by the oomycete pathogen Phytophthora infestans, significantly hampers potato production. Recently, a new Resistance to Phytophthora infestans (Rpi) gene, Rpi-amr1, was cloned from a wild Solanum species, Solanum americanum. Identification of the corresponding recognized effector (Avirulence or Avr) genes from P. infestans is key to elucidating their naturally occurring sequence variation, which in turn informs the potential durability of the cognate late blight resistance. To identify the P. infestans effector recognized by Rpi-amr1, we screened available RXLR effector libraries and used long read and cDNA pathogen-enrichment sequencing (PenSeq) on four P. infestans isolates to explore the untested effectors. Using single-molecule real-time sequencing (SMRT) and cDNA PenSeq, we identified 47 highly expressed effectors from P. infestans, including PITG_07569, which triggers a highly specific cell death response when transiently coexpressed with Rpi-amr1 in Nicotiana benthamiana, suggesting that PITG_07569 is Avramr1. Here we demonstrate that long read and cDNA PenSeq enables the identification of full-length RXLR effector families and their expression profile. This study has revealed key insights into the evolution and polymorphism of a complex RXLR effector family that is associated with the recognition by Rpi-amr1.


Assuntos
Phytophthora infestans/genética , Doenças das Plantas/parasitologia , Polimorfismo Genético/genética , Solanum tuberosum/parasitologia , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Morte Celular , DNA Complementar/genética , Phytophthora infestans/patogenicidade , Solanum/virologia , Nicotiana/virologia
9.
Plant Biotechnol J ; 18(3): 655-667, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31397954

RESUMO

Potato virus Y (PVY) is a major potato (Solanum tuberosum L.) pathogen that causes severe annual crop losses worth billions of dollars worldwide. PVY is transmitted by aphids, and successful control of virus transmission requires the extensive use of environmentally damaging insecticides to reduce vector populations. Rysto , from the wild relative S. stoloniferum, confers extreme resistance (ER) to PVY and related viruses and is a valuable trait that is widely employed in potato resistance breeding programmes. Rysto was previously mapped to a region of potato chromosome XII, but the specific gene has not been identified to date. In this study, we isolated Rysto using resistance gene enrichment sequencing (RenSeq) and PacBio SMRT (Pacific Biosciences single-molecule real-time sequencing). Rysto was found to encode a nucleotide-binding leucine-rich repeat (NLR) protein with an N-terminal TIR domain and was sufficient for PVY perception and ER in transgenic potato plants. Rysto -dependent extreme resistance was temperature-independent and requires EDS1 and NRG1 proteins. Rysto may prove valuable for creating PVY-resistant cultivars of potato and other Solanaceae crops.


Assuntos
Resistência à Doença , Genes de Plantas , Doenças das Plantas/virologia , Potyvirus/patogenicidade , Solanum tuberosum/imunologia , Animais , Afídeos/virologia , Cruzamento , Proteínas NLR/imunologia , Doenças das Plantas/imunologia , Plantas Geneticamente Modificadas/virologia , Solanum tuberosum/virologia
10.
Nutrients ; 10(9)2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30200432

RESUMO

Lemon verbena (Lippia citriodora) has been used as a food spice, cosmetic, and in traditional medicine formulations to treat asthma and diabetes in South America and Southern Europe. Hibiscus flower (Hibiscus sabdariffa L.) is used in traditional Chinese medicine in the form of a tea to treat hypertension and inflammation. In the present study, we examined the synergistic effects of a formula of Metabolaid® (MetA), a combination of lemon verbena and hibiscus-flower extracts, on obesity and its complications in high-fat-diet (HFD)-induced obese mice. The results showed that MetA decreased body weight, white adipose tissue (WAT), and liver weight. Additionally, serum and hepatic lipid profiles, glucose levels, glucose tolerance, and cold-induced thermogenesis were significantly improved. Appetite-regulating hormones adiponectin and leptin were significantly increased and decreased, respectively, while the inflammatory-related factors tumor necrosis factor (TNF)-α and interleukin (IL)-6 were downregulated by MetA. Adipogenesis-activating gene expression was decreased, while increased thermogenesis-inducing genes were upregulated in the WAT, correlating with increased phosphorylation of AMPK and fatty-acid oxidation in the liver. Taken together, these results suggest that MetA decreased obesity and its complications in HFD mice. Therefore, this formula may be a candidate for the prevention and treatment of obesity and its complications.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Ativadores de Enzimas/farmacologia , Hibiscus , Lippia , Obesidade/prevenção & controle , Extratos Vegetais/farmacologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/fisiopatologia , Adiposidade/efeitos dos fármacos , Animais , Fármacos Antiobesidade/isolamento & purificação , Biomarcadores/sangue , Modelos Animais de Doenças , Ativação Enzimática , Ativadores de Enzimas/isolamento & purificação , Flores , Hibiscus/química , Lippia/química , Masculino , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/enzimologia , Obesidade/fisiopatologia , Extratos Vegetais/isolamento & purificação , Folhas de Planta , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Verbena/química , Aumento de Peso/efeitos dos fármacos
11.
Theor Appl Genet ; 131(6): 1287-1297, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29560514

RESUMO

KEY MESSAGE: A broad-spectrum late blight disease-resistance gene from Solanum verrucosum has been mapped to potato chromosome 9. The gene is distinct from previously identified-resistance genes. We have identified and characterised a broad-spectrum resistance to Phytophthora infestans from the wild Mexican species Solanum verrucosum. Diagnostic resistance gene enrichment (dRenSeq) revealed that the resistance is not conferred by previously identified nucleotide-binding, leucine-rich repeat genes. Utilising the sequenced potato genome as a reference, two complementary enrichment strategies that target resistance genes (RenSeq) and single/low-copy number genes (Generic-mapping enrichment Sequencing; GenSeq), respectively, were deployed for the rapid, SNP-based mapping of the resistance through bulked-segregant analysis. Both approaches independently positioned the resistance, referred to as Rpi-ver1, to the distal end of potato chromosome 9. Stringent post-enrichment read filtering identified a total of 64 informative SNPs that corresponded to the expected ratio for significant polymorphisms in the parents as well as the bulks. Of these, 61 SNPs are located on potato chromosome 9 and reside within 27 individual genes, which in the sequenced potato clone DM locate to positions 45.9 to 60.9 Mb. RenSeq- and GenSeq-derived SNPs within the target region were converted into allele-specific PCR-based KASP markers and further defined the position of the resistance to a 4.3 Mb interval at the bottom end of chromosome 9 between positions 52.62-56.98 Mb.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Doenças das Plantas/genética , Solanum/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Diploide , Marcadores Genéticos , Phytophthora infestans , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Solanum/microbiologia
12.
Cell Microbiol ; 19(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27302335

RESUMO

The oomycete pathogen Phytophthora infestans causes potato late blight, and as a potato and tomato specialist pathogen, is seemingly poorly adapted to infect plants outside the Solanaceae. Here, we report the unexpected finding that P. infestans can infect Arabidopsis thaliana when another oomycete pathogen, Albugo laibachii, has colonized the host plant. The behaviour and speed of P. infestans infection in Arabidopsis pre-infected with A. laibachii resemble P. infestans infection of susceptible potato plants. Transcriptional profiling of P. infestans genes during infection revealed a significant overlap in the sets of secreted-protein genes that are induced in P. infestans upon colonization of potato and susceptible Arabidopsis, suggesting major similarities in P. infestans gene expression dynamics on the two plant species. Furthermore, we found haustoria of A. laibachii and P. infestans within the same Arabidopsis cells. This Arabidopsis-A. laibachii-P. infestans tripartite interaction opens up various possibilities to dissect the molecular mechanisms of P. infestans infection and the processes occurring in co-infected Arabidopsis cells.


Assuntos
Arabidopsis/microbiologia , Interações Microbianas , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Oomicetos/genética , Solanum tuberosum/microbiologia
13.
Biotechniques ; 61(6): 315-322, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27938323

RESUMO

Targeted capture provides an efficient and sensitive means for sequencing specific genomic regions in a high-throughput manner. To date, this method has mostly been used to capture exons from the genome (the exome) using short insert libraries and short-read sequencing technology, enabling the identification of genetic variants or new members of large gene families. Sequencing larger molecules results in the capture of whole genes, including intronic and intergenic sequences that are typically more polymorphic and allow the resolution of the gene structure of homologous genes, which are often clustered together on the chromosome. Here, we describe an improved method for the capture and single-molecule sequencing of DNA molecules as large as 7 kb by means of size selection and optimized PCR conditions. Our approach can be used to capture, sequence, and distinguish between similar members of the NB-LRR gene family-key genes in plant immune systems.


Assuntos
DNA/genética , DNA/isolamento & purificação , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , DNA/análise , Éxons/genética , Biblioteca Gênica , Genes de Plantas/genética , Modelos Genéticos , Solanum/genética
14.
Nat Biotechnol ; 34(6): 656-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27111721

RESUMO

Global yields of potato and tomato crops have fallen owing to potato late blight disease, which is caused by Phytophthora infestans. Although most commercial potato varieties are susceptible to blight, many wild potato relatives show variation for resistance and are therefore a potential source of Resistance to P. infestans (Rpi) genes. Resistance breeding has exploited Rpi genes from closely related tuber-bearing potato relatives, but is laborious and slow. Here we report that the wild, diploid non-tuber-bearing Solanum americanum harbors multiple Rpi genes. We combine resistance (R) gene sequence capture (RenSeq) with single-molecule real-time (SMRT) sequencing (SMRT RenSeq) to clone Rpi-amr3i. This technology should enable de novo assembly of complete nucleotide-binding, leucine-rich repeat receptor (NLR) genes, their regulatory elements and complex multi-NLR loci from uncharacterized germplasm. SMRT RenSeq can be applied to rapidly clone multiple R genes for engineering pathogen-resistant crops.


Assuntos
Proteínas Fúngicas/genética , Phytophthora/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Clonagem Molecular/métodos , Sistemas Computacionais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças das Plantas/prevenção & controle
15.
BMC Plant Biol ; 14: 120, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24885638

RESUMO

BACKGROUND: The availability of draft crop plant genomes allows the prediction of the full complement of genes that encode NB-LRR resistance gene homologs, enabling a more targeted breeding for disease resistance. Recently, we developed the RenSeq method to reannotate the full NB-LRR gene complement in potato and to identify novel sequences that were not picked up by the automated gene prediction software. Here, we established RenSeq on the reference genome of tomato (Solanum lycopersicum) Heinz 1706, using 260 previously identified NB-LRR genes in an updated Solanaceae RenSeq bait library. RESULT: Using 250-bp MiSeq reads after RenSeq on genomic DNA of Heinz 1706, we identified 105 novel NB-LRR sequences. Reannotation included the splitting of gene models, combination of partial genes to a longer sequence and closing of assembly gaps. Within the draft S. pimpinellifolium LA1589 genome, RenSeq enabled the annotation of 355 NB-LRR genes. The majority of these are however fragmented, with 5'- and 3'-end located on the edges of separate contigs. Phylogenetic analyses show a high conservation of all NB-LRR classes between Heinz 1706, LA1589 and the potato clone DM, suggesting that all sub-families were already present in the last common ancestor. A phylogenetic comparison to the Arabidopsis thaliana NB-LRR complement verifies the high conservation of the more ancient CCRPW8-type NB-LRRs. Use of RenSeq on cDNA from uninfected and late blight-infected tomato leaves allows the avoidance of sequence analysis of non-expressed paralogues. CONCLUSION: RenSeq is a promising method to facilitate analysis of plant resistance gene complements. The reannotated tomato NB-LRR complements, phylogenetic relationships and chromosomal locations provided in this paper will provide breeders and scientists with a useful tool to identify novel disease resistance traits. cDNA RenSeq enables for the first time next-gen sequencing approaches targeted to this very low-expressed gene family without the need for normalization.


Assuntos
DNA Complementar/genética , Resistência à Doença/genética , Genes de Plantas , Genômica/métodos , Doenças das Plantas/genética , Análise de Sequência de DNA/métodos , Solanum lycopersicum/genética , Cromossomos de Plantas/genética , Sequência Conservada/genética , Evolução Molecular , Biblioteca Gênica , Estudos de Associação Genética , Loci Gênicos , Modelos Genéticos , Anotação de Sequência Molecular , Família Multigênica , Filogenia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Solanum tuberosum/genética
16.
Philos Trans R Soc Lond B Biol Sci ; 369(1639): 20130087, 2014 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-24535396

RESUMO

Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree.


Assuntos
Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/genética , Resistência à Doença/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/genética , Clonagem Molecular/métodos , Modelos Biológicos , Solanum tuberosum/genética , Solanum tuberosum/microbiologia
17.
Theor Appl Genet ; 127(3): 647-57, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24343200

RESUMO

Late blight of potato, caused by Phytophthora infestans, is one of the most economically important diseases worldwide, resulting in substantial yield losses when not adequately controlled by fungicides. Late blight was a contributory factor in The Great Irish Famine, and breeding for resistance to the disease began soon after. Several disease-resistant cultivars have subsequently been obtained, and amongst them Sárpo Mira is currently one of the most effective. The aim of this work was to extend the knowledge about the genetic basis of the late blight resistance in Sárpo Mira and to identify molecular markers linked to the resistance locus which would be useful for marker-assisted selection. A tetraploid mapping population from a Sárpo Mira × Maris Piper cross was phenotyped for foliar late blight resistance using detached leaflet tests. A locus with strong effect on late blight resistance was mapped at the end of chromosome XI in the vicinity of the R3 locus. Sárpo Mira's genetic map of chromosome XI contained 11 markers. Marker 45/XI exhibited the strongest linkage to the resistance locus and accounted for between 55.8 and 67.9% of variance in the mean resistance scores noted in the detached leaflet assays. This marker was used in molecular marker-facilitated gene pyramiding. Ten breeding lines containing a late blight resistance locus from cultivar Sárpo Mira and the Rpi-phu1 gene originating from the late blight resistant accession of Solanum phureja were obtained. These lines have extended the spectrum of late blight resistance compared with Sárpo Mira and it is expected that resistance in plants containing this gene pyramid will have enhanced durability.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Phytophthora infestans , Solanum tuberosum/genética , Solanum tuberosum/microbiologia , Cruzamento , Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , Ligação Genética , Marcadores Genéticos , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Análise de Sequência de DNA
18.
Plant J ; 76(3): 530-44, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23937694

RESUMO

RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum 'Heinz 1706' extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines.


Assuntos
Anotação de Sequência Molecular/métodos , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , Produtos Agrícolas/genética , Genes de Plantas , Família Multigênica , Phytophthora infestans/genética , Imunidade Vegetal/genética , Polimorfismo de Nucleotídeo Único/genética , Solanum tuberosum
19.
J Biol Chem ; 288(20): 14332-14340, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23569203

RESUMO

Calcium-dependent protein kinases (CDPKs) are Ca(2+) sensors that regulate diverse biological processes in plants and apicomplexans. However, how CDPKs discriminate specific substrates in vivo is still largely unknown. Previously, we found that a potato StCDPK5 is dominantly localized to the plasma membrane and activates the plasma membrane NADPH oxidase (RBOH; for respiratory burst oxidase homolog) StRBOHB by direct phosphorylation of the N-terminal region. Here, we report the contribution of the StCDPK5 N-terminal variable (V) domain to activation of StRBOHB in vivo using heterologous expression system in Nicotiana benthamiana. Mutations of N-terminal myristoylation and palmitoylation sites in the V domain eliminated the predominantly plasma membrane localization and the capacity of StCDPK5 to activate StRBOHB in vivo. A tomato SlCDPK2, which also contains myristoylation and palmitoylation sites in its N terminus, phosphorylated StRBOHB in vitro but not in vivo. Functional domains responsible for activation and phosphorylation of StRBOHB were identified by swapping regions for each domain between StCDPK5 and SlCDPK2. The substitution of the V domain of StCDPK5 with that of SlCDPK2 abolished the activation and phosphorylation abilities of StRBOHB in vivo and relocalized the chimeric CDPK to the trans-Golgi network, as observed for SlCDPK2. Conversely, SlCDPK2 substituted with the V domain of StCDPK5 localized to the plasma membrane and activated StRBOHB. These results suggest that the V domains confer substrate specificity in vivo by dictating proper subcellular localization of CDPKs.


Assuntos
Regulação da Expressão Gênica de Plantas , Mutação , NADPH Oxidases/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Microscopia Confocal , Fosforilação , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas Quinases/genética , Espécies Reativas de Oxigênio , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Explosão Respiratória , Transdução de Sinais , Solanum tuberosum/enzimologia , Solanum tuberosum/genética , Especificidade por Substrato
20.
BMC Genomics ; 13: 75, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22336098

RESUMO

BACKGROUND: The potato genome sequence derived from the Solanum tuberosum Group Phureja clone DM1-3 516 R44 provides unparalleled insight into the genome composition and organisation of this important crop. A key class of genes that comprises the vast majority of plant resistance (R) genes contains a nucleotide-binding and leucine-rich repeat domain, and is collectively known as NB-LRRs. RESULTS: As part of an effort to accelerate the process of functional R gene isolation, we performed an amino acid motif based search of the annotated potato genome and identified 438 NB-LRR type genes among the ~39,000 potato gene models. Of the predicted genes, 77 contain an N-terminal toll/interleukin 1 receptor (TIR)-like domain, and 107 of the remaining 361 non-TIR genes contain an N-terminal coiled-coil (CC) domain. Physical map positions were established for 370 predicted NB-LRR genes across all 12 potato chromosomes. The majority of NB-LRRs are physically organised within 63 identified clusters, of which 50 are homogeneous in that they contain NB-LRRs derived from a recent common ancestor. CONCLUSIONS: By establishing the phylogenetic and positional relationship of potato NB-LRRs, our analysis offers significant insight into the evolution of potato R genes. Furthermore, the data provide a blueprint for future efforts to identify and more rapidly clone functional NB-LRR genes from Solanum species.


Assuntos
Proteínas de Plantas/genética , Solanum tuberosum/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Mapeamento Cromossômico , Análise por Conglomerados , Genoma de Planta , Leucina/química , Dados de Sequência Molecular , Proteínas de Plantas/análise , Solanum tuberosum/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA