Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Air Waste Manag Assoc ; 73(1): 50-64, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36200828

RESUMO

Odor is usually a complex mixture of various compounds. In many countries, odor complaints have been addressed using the air dilution olfactory method (ADOM) to reduce their malodor complaint. In this study, continuous monitoring of ammonia, hydrogen sulfide, and total volatile organic compounds (TVOC) using sensors was conducted in facilities for municipal and livestock wastewater treatment (LWT), and for food waste composting (FWC). Odor intensity was modeled by multivariate linear regression using sensor monitoring data with air dilution measured by the ADOM. In testing the performance of sensors in the lab, all three sensors showed acceptable values for linearity, accuracy, repeatability, lowest detection limit, and response time, so the sensors were acceptable for application in the field. In on-site real-time monitoring, the three sensors functioned well in the three environmental facilities during the testing period. Average ammonia and hydrogen sulfide concentrations were high in the LWT facility, while TVOC showed the highest concentration in the FWC facility. A longer sampling time is necessary for ammonia monitoring. Odor intensity from individual sensor data correlated well to complex odor measured by the ADOM. Finally, we suggest a protocol for field application of sensor monitoring and odor data reproduction.Implications: We suggest a protocol for the field application of sensor monitoring and odor data estimation in this study. This study can be useful to a policy maker and field operator to reduce odor emission through the determination of a more effective treatment technology and removal pathway for individual odorants.


Assuntos
Poluentes Atmosféricos , Sulfeto de Hidrogênio , Eliminação de Resíduos , Compostos Orgânicos Voláteis , Sulfeto de Hidrogênio/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Amônia/análise , Análise Custo-Benefício , Alimentos , Eliminação de Resíduos/métodos , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
2.
Biodegradation ; 18(5): 597-605, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17149656

RESUMO

We investigated the simultaneous degradation of diesel oil in soil and the organic matter in food waste by composting in 8 l reactors. Using a 0.5 l/min air flow rate, and 0.5-1% diesel oil concentrations together with 20% food waste, high composting temperatures (above 60 degrees C) were attained due to the efficient degradation of the food waste. Petroleum hydrocarbons were degraded by 80% after only 15 days composting in the presence of food waste. In a 28 l reactor scale-up experiment using 1% oil, 20% food waste and 79% soil, removal efficiencies of petroleum hydrocarbons and food waste after 15 days were 79% and 77%, respectively.


Assuntos
Biodegradação Ambiental , Recuperação e Remediação Ambiental , Indústria Alimentícia/métodos , Petróleo , Reatores Biológicos , Alimentos , Gasolina , Hidrocarbonetos/química , Eliminação de Resíduos , Esgotos , Solo , Poluentes do Solo/química , Temperatura , Fatores de Tempo , Gerenciamento de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA