Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526664

RESUMO

We studied correlated firing between motor thalamic and cortical cells in monkeys performing a delayed-response reaching task. Simultaneous recording of thalamocortical activity revealed that around movement onset, thalamic cells were positively correlated with cell activity in the primary motor cortex but negatively correlated with the activity of the premotor cortex. The differences in the correlation contrasted with the average neural responses, which were similar in all three areas. Neuronal correlations reveal functional cooperation and opposition between the motor thalamus and distinct motor cortical areas with specific roles in planning vs. performing movements. Thus, by enhancing and suppressing motor and premotor firing, the motor thalamus can facilitate the transition from a motor plan to execution.


Assuntos
Sincronização Cortical/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Tálamo/fisiologia , Animais , Feminino , Macaca fascicularis , Neurônios/fisiologia , Análise e Desempenho de Tarefas
2.
J Neurophysiol ; 111(4): 733-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24259547

RESUMO

We have used an analysis of signal and variation in motor behavior to elucidate the organization of the cerebellar and brain stem circuits that control smooth pursuit eye movements. We recorded from the abducens nucleus and identified floccular target neurons (FTNs) and other, non-FTN vestibular neurons. First, we assessed neuron-behavior correlations, defined as the trial-by-trial correlation between the variation in neural firing and eye movement, in brain stem neurons. In agreement with prior data from the cerebellum, neuron-behavior correlations during pursuit initiation were large in all neurons. Second, we asked whether movement variation arises upstream from, in parallel to, or downstream from a given site of recording. We developed a model that highlighted two measures: the ratio of the SDs of neural firing rate and eye movement ("SDratio") and the neuron-behavior correlation. The relationship between these measures defines possible sources of variation. During pursuit initiation, SDratio was approximately equal to neuron-behavior correlation, meaning that the source of signal and variation is upstream from the brain stem. During steady-state pursuit, neuron-behavior correlation became somewhat smaller than SDratio for FTNs, meaning that some variation may arise downstream in the brain stem. The data contradicted the model's predictions for sources of variation in pathways that run parallel to the site of recording. Because signal and noise are tightly linked in motor control, we take the source of variation as a proxy for the source of signal, leading us to conclude that the brain controls movement synergies rather than single muscles for eye movements.


Assuntos
Tronco Encefálico/fisiologia , Cerebelo/fisiologia , Modelos Neurológicos , Músculo Esquelético/inervação , Neurônios/fisiologia , Movimentos Sacádicos , Estimulação Acústica , Potenciais de Ação , Animais , Mapeamento Encefálico , Tronco Encefálico/citologia , Cerebelo/citologia , Macaca mulatta , Masculino , Músculo Esquelético/fisiologia , Neurônios/classificação , Ruído , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA