Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29093, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665562

RESUMO

Objective: Shenshuai Yingyang Jiaonang (SSYYJN), a traditional Chinese medicine formula, can ameliorate muscle atrophy associated with chronic kidney disease (CKD). However, its mechanisms of action remain unclear. This study is to investigate the molecular mechanisms involved in the effects of SSYYJN in ameliorating muscle atrophy associated with CKD in rats. Methods: The chemical compounds of SSYYJN were identified by UPLC-Q-Orbitrap HRMS. Considering the dose-response relationship of the identified compounds, male SD rats were randomly divided into Sham, Model, SSYYJN, and α-Keto Acid (KA) groups. Subsequently, we assessed the therapeutic and anti-ferroptotic effects of SSYYJN. Network pharmacology studies were used to predict the molecular mechanism of SSYYJN on ferroptosis and were further verified for accuracy. Results: A total of 42 active compounds were identified from SSYYJN. SSYYJN alleviated muscle atrophy caused by CKD, as evidenced by changes in body weight, serum biochemical indices, mass and histopathology of the skeletal muscle, and the levels of MuRF1. SSYYJN reduced the levels of iron, MDA, and ROS, increased the levels of GSH, NAPDH, and Gpx4. Network pharmacology analysis indicated that SSYYJN exerted anti-ferroptotic effects that were closely related to the HIF-1α signaling pathway. Molecular protein and genetic test results showed that SSYYJN increased HIF-1α protein and increased SLC7A11. Conclusions: SSYYJN attenuates muscle atrophy in CKD by inhibiting ferroptosis through the activation of the HIF-1α/SLC7A11 pathway and might be a promising traditional Chinese medicine for muscle atrophy in CKD.

2.
J Pharm Biomed Anal ; 204: 114271, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34325249

RESUMO

Houttuynia cordata Thunb. ("Yu-Xing-Cao"), a traditional Chinese medicinal herb, has long been used to treat various diseases. However, detailed information regarding the chemical constituents of H. cordata aqueous extract is lacking, and the molecular basis of its beneficial effects on muscle is unknown. To investigate these points, in this study, we used ultra-performance liquid chromatography coupled with quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) in positive and negative ion modes to profile and identify the major constituents of H. cordata water extract. A total of 63 peaks were identified based on mass and fragmentation characteristics, including 29 organic acids and their glycosides, 17 flavonoids, 7 volatiles, 4 pyrimidine and purine derivatives, 2 alkaloids, 2 amino acids, 1 isovanillin, and 1 coumarin. The total flavonoid and polyphenol contents of the extract were 4.77 and 139.15 mg/mL, respectively, by ultraviolet spectrophotometry. The cytoprotective activity of H. cordata aqueous extract was evaluated using C2C12 cells treated with tumor necrosis factor (TNF)-α to induce oxidative challenge. The TNF-α induced decrease in cell viability was reversed by treatment for 48 h with the extract; moreover, superoxide dismutase activity was increased while reactive oxygen species level was decreased. These results provide molecular-level evidence for the antioxidant effect of H. cordata extract and highlight its therapeutic potential for the treatment of muscle injury or diseases caused by oxidative stress.


Assuntos
Medicamentos de Ervas Chinesas , Houttuynia , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/farmacologia , Flavonoides/análise , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Polifenóis
3.
Eur J Pharmacol ; 907: 174271, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34147475

RESUMO

Renal fibrosis is the pathological consequence of progressive chronic kidney disease. Although it has been reported that vitamin D3 exerts antifibrotic effects, the underlying mechanisms remain unclear. This study is aimed at investigating the effects and molecular mechanisms in high-dose vitamin D3 treatment on renal fibrosis. A model of chronic kidney disease was established by 5/6 nephrectomy in rats characterised by high levels of serum creatine, urea nitrogen, and urinary protein. Serum 25-dihydroxyvitamin D3, calcium and parathormone levels were measured to evaluate vitamin D levels. Hematoxylin and eosin, periodic acid Schiff and Mallory's Trichrome staining were used to evaluate histopathological changes in rats. Moreover, the expression of vimentin, collagen I, α-smooth muscle actin and E-cadherin were analyzed at molecular and histopathological levels. Our results showed that exposure to vitamin D3 decreased the levels of serum creatine, urea nitrogen and urine protein and restored the homeostasis of calcium and parathormone. Vitamin D3 also downregulated the expression of vimentin, collagen I and α-smooth muscle actin and attenuated renal fibrosis and epithelial to mesenchymal transition in the kidney. Importantly, vitamin D3 treatment increased the expression of the vitamin D receptor and inhibited Transforming growth factor-ß1 (TGF-ß1)/Smad3 signaling pathway in rats kidneys with chronic kidney disease. Mechanistically, the upregulation of TGF-ß1 and phosphorylation of Smad3 induced by vitamin D3 was reversed by activation of the vitamin D receptor. Our findings indicated that vitamin D3 is a potential antifibrotic drug in chronic kidney disease via the vitmin D receptor and inhibiting TGF-ß1/Smad3 signaling pathway.


Assuntos
Fator de Crescimento Transformador beta1 , Animais , Colecalciferol , Transição Epitelial-Mesenquimal , Ratos , Receptores de Calcitriol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA