Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 146(1): 294-9, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23313392

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Panax ginseng (family Araliaceae) is traditionally used as a remedy for cancer, inflammation, stress and aging. AIM OF STUDY: To explore whether ginsenosides Rg5 and Rh3, the main constituents of heat-processed ginseng (the root of Panax ginseng), could protect memory deficit. MATERIALS AND METHODS: We isolated ginsenosides Rh3 and Rg5 from heated-processed ginseng treated with and without human feces, respectively. Then we investigated their protective effects on memory impairment using the passive avoidance, Y-maze and Morris water maze tasks in mice. Memory deficit was induced in mice by the intraperitoneal injection of scopolamine. RESULTS: Ginsenosides Rg5 or Rh3 increased the latency time reduced by scopolamine in passive avoidance test. Treatment with ginsenoside Rg5 or Rh3 significantly reversed the lowered spontaneous alteration induced by scopolamine in Y-maze task. Ginsenoisde Rg5 or Rh3 (10 mg/kg) significantly shortened the escape latencies prolonged by treatment with scopolamine on the last day of training trial sessions in Morris water maze task. Furthermore, ginsenosides Rg5 and Rh3 inhibited acetylcholinesterase activity in a dose-dependent manner, with IC50 values of 18.4 and 10.2 µM, respectively. The inhibitory potency of ginsenoside Rh3 is comparable with that of donepezil (IC50=9.9 µM). These ginsenosides also reversed hippocampal brain-derived neurotrophic factor (BDNF) expression and cAMP response element-binding protein (CREB) phosphorylation reduced by scopolamine. Of them, ginsenoside Rh3 more potently protected memory deficit. CONCLUSIONS: Ginsenoside Rg5 and its metabolite ginsenoside Rh3 may protect memory deficit by inhibiting AChE activity and increasing BDNF expression and CREB activation.


Assuntos
Ginsenosídeos/uso terapêutico , Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ginsenosídeos/farmacologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/farmacologia , Escopolamina
2.
Phytomedicine ; 20(1): 84-8, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23079229

RESUMO

The rhizome of Codonopsis lanceolata (family Campanulaceae), which contains lancemaside A as a main constituent, has been used as herbal medicine to treat inflammation, insomnia, and hypomnesia. Lancemaside A and echinocystic acid, which is its metabolite by intestinal microflora, potently inhibited acetylcholinesterase activity in a dose-dependent manner, with IC50 value 13.6 µM and 12.2 µM, respectively. Its inhibitory potency is comparable with that of donepezil (IC50=10.9 µM). Lancemaside A and echinocystic acid significantly reversed scopolamine-induced memory and learning deficits on passive avoidance task. Lancemaside A orally administered 5h before treatment with scopolamine reversed scopolamine-induced memory and learning deficits more potently than one orally administered 1h before. Echinocystic acid more potently reversed it than lancemaside A. Lancemaside A and echinocystic acid significantly reversed scopolamine-induced memory and learning deficits on the Y-maze and Morris water maze tasks. Lancemaside A and echinocystic acid also increased the expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (p-CREB). Based on these findings, orally administered lancemaside A may be metabolized to echinocystic acid, which may be absorbed into the blood and ameliorate memory and learning deficits by inhibiting AChE activity and inducing BDNF and p-CREB expressions.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Codonopsis/química , Deficiências da Aprendizagem/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Ácido Oleanólico/análogos & derivados , Fitoterapia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Donepezila , Relação Dose-Resposta a Droga , Indanos/farmacologia , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Deficiências da Aprendizagem/induzido quimicamente , Deficiências da Aprendizagem/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Piperidinas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Rizoma , Escopolamina
3.
J Ethnopharmacol ; 142(1): 105-112, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22855946

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The root of Panax ginseng CA Meyer (ginseng) has been used for diabetes, cancer, stress and allergic diseases in the traditional Chinese medicine. AIM OF THE STUDY: To understand the role of intestinal microflora in the pharmacological effect of ginsenoside Re, which is a main constituent of ginseng, we investigated its anti-scratching behavioral effect in the mice treated with or without antibiotics. MATERIALS AND METHODS: Ginsenoside Re was orally administered to the mice treated with antibiotics (cefadroxil, oxytetracycline and erythromycin mixture (COE), streptomycin or/and tetracycline) and then investigated the relationship between ginsenoside Re-metabolizing ß-glucosidase and α-rhamnosidase activities of intestinal microflora and its antiscratching behavioral effect. The anti-scratching behavioral effects of ginsenosides were investigated in the increments of 1 h and 6 h after their oral administrations. The scratching behavioral frequency was measured for 1 h after treatment with histamine. RESULTS: Ginsenoside Re inhibited histamine-induced scratching behavior in mice. The anti-scratching behavioral effect of ginsenoside Re was more potent 6 h after its oral administration than 1 h after. However, its inhibitory effect was significantly attenuated in mice treated with COE, but it nearly was not affected in mice treated with streptomycin and/or tetracycline. Treatment with COE also significantly lowered fecal ginsenoside Re-metabolizing ß-glucosidase and α-rhamnosidase activities in mice, as well as fecal metabolic activity of ginsenoside Re to ginsenoside Rh1. The anti-scratching behavioral effect of ginsenoside Rh1, a metabolite of ginsenoside Re by intestinal microflora, was superior to that of ginsenoside Re. Ginsenoside Rh1 potently inhibited the expression of IL-4 and TNF-α, as well as the activation of NF-κB and c-jun activation in histamine-stimulated scratching behavioral mice. CONCLUSION: Ginsenoside Re may be metabolized to ginsenoside Rh1 by intestinal microflora, which enhances its anti-scratching behavioral effect by inhibiting NF-κB and c-jun activations.


Assuntos
Antibacterianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Ginsenosídeos/farmacologia , Adulto , Idoso , Animais , Antialérgicos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Enterobacteriaceae/efeitos dos fármacos , Fezes/enzimologia , Fezes/microbiologia , Feminino , Ginsenosídeos/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Histamina/farmacologia , Humanos , Interleucina-4/imunologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade , Ftalazinas/farmacologia , Prurido/induzido quimicamente , Prurido/imunologia , Prurido/fisiopatologia , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem , beta-Glucosidase/metabolismo
4.
Biol Pharm Bull ; 35(4): 573-81, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22466563

RESUMO

To understand the role of intestinal microflora in expressing the pharmacological effect of ginsenoside Rb1, the metabolic activity of ginsenoside Rb1 by 148 fecal specimens was measured and its metabolizing ß-glucosidase was cloned. The average activities for p-nitrophenyl-ß-D-glucopyranoside and ginsenoside Rb1 were 0.097±0.059 µmol/min/mg and 0.311±0.118 pmol/min/mg, respectively. These enzyme activities were not different between male and female, or between ages. A gene encoding ß-D-glucosidase (BglX) was cloned from Bifidobacterium longum H-1, which transformed ginsenoside Rb1 to compound K. The probe for cloning was synthesized from the genes encoding a ß-D-glucosidase of previously reported B. longum DJO10A. The sequences of the cloned gene revealed 2364 bp open reading frame (ORF) encoding a protein containing 787 amino acids (molecular weight of 95 kDa). The gene exhibited 99% homology (identities) to that of B. longum. The cloned gene was expressed under T7 promoter of the expression vector, pET-39b(+), in Escherichia coli BL21(DE3), and the expressed enzyme was purified by using HiTrap immobilized metal affinity chromatography (IMAC) HP. The enzyme potently biotransformed ginsenoside Rb1, loganin, arctiin and arbutin to ginsenoside Rd, loganetin, arctigenin and hydroquinone, respectively, but was not active in the case of hesperidin, and kakkalide. This is the first report on cloning and expression of ß-D-glucosidase from B. longum. Based on these findings, ginsenoside Rb1 may be metabolized to bioactive compound(s) by exo-ß-D-glucosidase(s) produced from the intestinal bacteria and its pharmacological effects may be dependent on intestinal bacterial exo-ß-D-glucosidase(s) activity.


Assuntos
Bifidobacterium/enzimologia , Ginsenosídeos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , beta-Glucosidase/metabolismo , Adulto , Idoso , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Clonagem Molecular , Escherichia coli/genética , Fezes/microbiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Panax , Adulto Jovem , beta-Glucosidase/genética
5.
Biochem Pharmacol ; 82(3): 278-86, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21600888

RESUMO

In the preliminary study, ginsenoside Rb1, a main constituent of the root of Panax ginseng (family Araliaceae), and its metabolite compound K inhibited a key factor of inflammation, nuclear transcription factor κB (NF-κB) activation, in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. When ginsenoside Rb1 or compound K were orally administered to 2,4,6-trinitrobenzene sulfuric acid (TNBS)-induced colitic mice, these agents inhibited colon shortening, macroscopic score, and colonic thickening. Furthermore, treatment with ginsenoside Rb1 or compound K at 20mg/kg inhibited colonic myeloperoxidase activity by 84% and 88%, respectively, as compared with TNBS alone (p<0.05), and also potently inhibited the expression of tumor necrosis factor-α, interleukin (IL)-1ß and IL-6, but increased the expression of IL-10. Both ginsenoside Rb1 and compound K blocked the TNBS-induced expressions of COX-2 and iNOS and the activation of NF-κB in mice. When ginsenoside Rb1 or compound K was treated in LPS-induced murine peritoneal macrophages, these agents potently inhibited the expression of the proinflammatory cytokines. Ginsenoside Rb1 and compound K also significantly inhibited the activation of interleukin-1 receptor-associated kinase-1 (IRAK-1), IKK-ß, NF-κB, and MAP kinases (ERK, JNK, and p-38); however, interaction between LPS and Toll-like receptor-4, IRAK-4 activation and IRAK-2 activation were unaffected. Furthermore, compound K inhibited the production of proinflammatory cytokines more potently than did those of ginsenoside Rb1. On the basis of these findings, ginsenosides, particularly compounds K, could be used to treat inflammatory diseases, such as colitis, by targeting IRAK-1 activation.


Assuntos
Colite/induzido quimicamente , Inibidores Enzimáticos/farmacologia , Ginsenosídeos/farmacologia , Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Animais , Colite/tratamento farmacológico , Colite/patologia , Ginsenosídeos/química , Ginsenosídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Estrutura Molecular , Panax/química , Ácido Trinitrobenzenossulfônico/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA