Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vaccine ; 41(47): 6980-6990, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37852870

RESUMO

There is still a need for a better and affordable seasonal influenza vaccine and the use of an adjuvant could solve both issues. Therefore, immunogenicity of a combination of low dose of 1/5TH (3 µg of HA) a licensed seasonal flu vaccine with the novel carbohydrate fatty acid monosulfate ester (CMS)-based adjuvant was investigated in ferrets and safety in rabbits. Without CMS, hemagglutination inhibition (HI) antibody titers ranged from ≤5 to 26 three weeks post immunization 1 (PV-1) and from 7 to 134 post-immunization 2 (PV-2) in ferrets. Virus neutralizing (VN) antibody titers ranged from 20 to 37 PV-1 and from 21 to 148 PV-2. CMS caused 10 to 111- fold increase in HI titers and 3 to 58- fold increase in VN titers PV-1 and PV-2, depending on influenza strain and dose of adjuvant. Eight mg of CMS generated significantly higher antibody titers than 1 or 4 mg, while 1 and 4 mg induced similar responses. Three µg of HA plus 4 mg of CMS was considered the highest human dose and safety of two-fold this dose was determined in acute and repeated-dose toxicity studies in rabbits conducted according to OECD GLP guidelines. The test item did not elicit any clinical signs, local reactions, effect on body weight, effect on urine parameters, effect on blood biochemistry, or gross pathological changes. In blood, increased numbers of neutrophils, lymphocytes and/or monocytes were noted and in iliac lymph nodes, increased cellularity of macrophages of minimal to mild degree were observed. In both ferrets and rabbits, body temperature increased with increasing dose of CMS to a maximum of 1 ˚C during the first day post-immunization, which returned to normal values during the second day. In the local tolerance study, histopathology of the site of injection at 7 days PV-1 revealed minimal, mild or moderate inflammation in 5, 8 and 5 animals, respectively. In the repeated-dose study and 21 days PV-3, minimal, mild or moderate inflammation was observed in 15, 18 and 3 animals, respectively. We concluded that the data show CMS is a potent and safe adjuvant ready for further clinical development of a seasonal influenza vaccine and combines high immunogenicity with possible antigen-sparing capacity.


Assuntos
Vacinas contra Influenza , Influenza Humana , Animais , Humanos , Coelhos , Furões , Estações do Ano , Anticorpos Antivirais , Influenza Humana/prevenção & controle , Adjuvantes Imunológicos , Testes de Inibição da Hemaglutinação , Carboidratos , Ácidos Graxos , Anticorpos Bloqueadores , Ésteres , Inflamação
2.
J Mol Cell Cardiol ; 52(1): 113-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21930133

RESUMO

In cardiac myocytes, cytochalasin D (CytoD) was reported to act as an actin disruptor and mechanical uncoupler. Using confocal and super-resolution STED microscopy, we show that CytoD preserves the actin filament architecture of adult rat ventricular myocytes in culture. Five hundred nanomolar CytoD was the optimal concentration to achieve both preservation of the T-tubular structure during culture periods of 3 days and conservation of major functional characteristics such as action potentials, calcium transients and, importantly, the contractile properties of single myocytes. Therefore, we conclude that the addition of CytoD to the culture of adult cardiac myocytes can indeed be used to generate a solid single-cell model that preserves both morphology and function of freshly isolated cells. Moreover, we reveal a putative link between cytoskeletal and T-tubular remodeling. In the absence of CytoD, we observed a loss of T-tubules that led to significant dyssynchronous Ca(2+)-induced Ca(2+) release (CICR), while in the presence of 0.5 µM CytoD, T-tubules and homogeneous CICR were majorly preserved. Such data suggested a possible link between the actin cytoskeleton, T-tubules and synchronous, reliable excitation-contraction-coupling. Thus, T-tubular re-organization in cell culture sheds some additional light onto similar processes found during many cardiac diseases and might link cytoskeletal alterations to changes in subcellular Ca(2+) signaling revealed under such pathophysiological conditions.


Assuntos
Citocalasina D/farmacologia , Miócitos Cardíacos/diagnóstico por imagem , Miócitos Cardíacos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Citocalasina D/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Wistar , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA