Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nutr Neurosci ; 23(6): 471-480, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30207204

RESUMO

Polyphenols are shown to protect from or delay the progression of chronic neurodegenerative diseases. Mitochondrial dysfunction plays a key role in the pathogenesis of Parkinson's disease (PD). This study was aims to gain insight into the role of ahydroalcoholic extract of cocoa (standardised for epicatechin content) on mitochondrial biogenesis in MPP+ intoxicated human neuroblastoma cells (SHSY5Y). The effects of cocoa on PPARγ, PGC1α, Nrf2 and TFAM protein expression and mitochondrial membrane potential were evaluated. A pre-exposure to cocoa extract decreased reactive oxygen species formation and restored mitochondrial membrane potential. The cocoa extract was found to up-regulate the expression of PPARγ and the downstream signalling proteins PGC1α, Nrf2 and TFAM. It increased the expression of the anti-apoptotic protein BCl2 and increased superoxide dismutase activity. Further, the cocoa extract down-regulated the expression of mitochondria fission 1 (Fis1) and up-regulated the expression of mitochondria fusion 2 (Mfn2) proteins, suggesting an improvement in mitochondrial functions in MPP+ intoxicated cells upon treatment with cocoa. Interestingly, cocoa up-regulates the expression of tyrosine hydroxylase, the rate limiting enzyme in dopamine synthesis. No change in the expression of PPARγ on treatment with cocoa extract was observed when the cells were pre-treated with PPARγ antagonist GW9662. This data suggests that cocoa mediates mitochondrial biogenesis via a PPARγ/PGC1α dependent signalling pathway and also has the ability to improve dopaminergic functions by increasing tyrosine hydroxylase expression. Based on our data, we propose that a cocoa bean extract and products thereof could be used as potential nutritional supplements for neuroprotection in PD.


Assuntos
Cacau , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Biogênese de Organelas , PPAR gama/metabolismo , Doença de Parkinson/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Extratos Vegetais/administração & dosagem , Linhagem Celular Tumoral , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Doença de Parkinson/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Neurochem Int ; 129: 104478, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31145971

RESUMO

Meta-analyses of tea consumption and reduced risk of Parkinson's disease have thrown light in the pathway of exploring beneficial properties of tea components. On the basis of dry mass, a typical black or green tea beverage contains approximately 6% of free amino acids, which impart high quality, taste and distinctive aroma to the tea infusion. L-theanine (chemically known as γ-glutamylethylamide) is a non-proteinogenic amino acid of tea that takes part in the biosynthesis of its polyphenols. Recently discovered neuroprotective effects of L-theanine can be attributed to its structural analogy with glutamate, the principal excitatory neurotransmitter in brain. This unique amino acid also bears a potential to ameliorate the pathophysiological changes associated with Parkinson's disease as it displays antioxidant and anti-inflammatory properties, improves motor behavioral abnormalities, increases dopamine availability and may cause a favorable downshift in neurodegeneration due to glutamate excitotoxicity. To gain an explicit understanding of the role of L-theanine, this review article is the first one to focus on its mechanism of neuromodulatory action and to critically evaluate the possibilities of employing this bioactive amide in the forage of anti-Parkinsonian medication. We also hypothesize the idea of L-theanine being a potent natural agent against L-DOPA induced dyskinesia, since long-term reliance on dopamine replacement therapy is linked with elevation in glutamate receptor activity.


Assuntos
Encéfalo/efeitos dos fármacos , Glutamatos/farmacologia , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Encéfalo/metabolismo , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Humanos , Neurotransmissores/metabolismo , Doença de Parkinson/metabolismo , Chá
3.
Neurotox Res ; 35(2): 318-330, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30242626

RESUMO

The neuroprotective role of tannoid principles of Emblica officinalis (EoT), an Indian and Chinese traditional medicinal plant against memory loss in aluminum chloride-induced in vivo model of Alzheimer's disease through attenuating AChE activity, oxidative stress, amyloid and tau toxicity, and apoptosis, was recently reported in our lab. However, to further elucidate the mechanism of neuroprotective effect of EoT, the current study was designed to evaluate endoplasmic reticulum stress-suppressing and anti-inflammatory role of EoT in PC 12 and SH-SY 5Y cells. These cells were divided into four groups: control (aluminum maltolate (Al(mal)3), EoT + Al(mal)3, and EoT alone based on 3-(4, 5-dimethyl 2-yl)-2, and 5-diphenyltetrazolium bromide (MTT) assay. EoT significantly reduced Al(mal)3-induced cell death and attenuated ROS, mitochondrial membrane dysfunction, and apoptosis (protein expressions of Bax; Bcl-2; cleaved caspases 3, 6, 9, 12; and cytochrome c) by regulating endoplasmic reticulum stress (PKR-like ER kinase (PERK), α subunit of eukaryotic initiation factor 2 (EIF2-α), C/EBP-homologous protein (CHOP), and high-mobility group box 1 protein (HMGB1)). Moreover, inflammatory response (NF-κB, IL-1ß, IL-6, and TNF-α) and Aß toxicity (Aß1-42) triggered by Al(mal)3 was significantly normalized by EoT. Our results suggested that EoT could be a possible/promising and novel therapeutic lead against Al-induced neurotoxicity. However, further extensive research is needed to prove its efficacy in clinical studies.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Phyllanthus emblica , Extratos Vegetais/farmacologia , Pironas/toxicidade , Alumínio/toxicidade , Animais , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Neurônios/metabolismo , Células PC12 , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Ratos
4.
Neurotox Res ; 34(3): 463-476, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29687202

RESUMO

Hesperidin, a flavanoglycone abundantly present in citrus fruits, is reported to have antioxidant, anti-inflammatory, and neuroprotective properties. Previous reports from our laboratory indicated the neuroprotective effect of hesperidin against aluminum chloride (AlCl3)-induced memory loss, acetylcholine esterase hyperactivity, oxidative stress, and enhanced expression of amyloid ß protein biosynthesis-related markers. However, their role on AlCl3-induced inflammation, caspase activation, Tau pathology, altered Akt/GSK 3ß signaling pathway, and Aß clearance marker has not yet been fully elucidated. Intraperitonial injection of AlCl3 (100 mg/kg body weight) for 60 days significantly elevated the expressions of insulin-degrading enzyme (IDE), cyclin-dependent kinase 5 (CDK 5), and phosphoTau (pTau); inflammatory markers such as glial fibrillary acidic protein (GFAP), ionized calcium-binding adapter molecule 1 (Iba-1), NF-kB, cyclooxygenase-2 (COX-2), interleukin (IL)-1ß, IL-4, IL-6, tumor necrosis factor-alpha (TNF-α), inducible nitric oxide synthase (iNOS); and apoptotic markers including cytosolic cytochrome c (cyto c), caspase-3, caspase-8, and caspase-9, and lowered expressions of mitochondrial cyto c, phospho-Akt (pAkt) and phospho-glycogen synthase kinase-3ß (pGSK-3ß) in the hippocampus and cortex. Co-administration of hesperidin to AlCl3 rats for 60 days significantly ameliorated the aluminum-induced pathological changes. The behavioral studies also supported the above findings. Our results imply that treatment with hesperidin might be a potent option for treating the symptoms of cognitive impairment in Alzheimer's disease by targeting its most prominent hallmarks.


Assuntos
Anti-Inflamatórios/uso terapêutico , Caspases/metabolismo , Encefalite/tratamento farmacológico , Hesperidina/uso terapêutico , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores Etários , Cloreto de Alumínio , Compostos de Alumínio/toxicidade , Animais , Cloretos/toxicidade , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalite/induzido quimicamente , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Transtornos Mentais/induzido quimicamente , Transtornos Mentais/tratamento farmacológico , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Reconhecimento Psicológico/efeitos dos fármacos
5.
Front Biosci (Schol Ed) ; 10(2): 285-299, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293433

RESUMO

Oxidative stress and mitochondrial dysfunction mediated neuro apoptosis is reported to play a major role in the pathology of Parkinson's disease. Zizyphus spina-christi fruits (ZSCF) are used as traditional medicines that are well-known for their high antioxidant properties. In the present study, we investigated the protective effects of ZSCF extract against 1-methyl-4-phenylpyridinium (MPP+) induced neurotoxicity in SH-SY5Y cell lines. The effect of ZCSF on MPP+ induced cell viability (MTT - 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay), membrane damage - (lactate dehydrogenase (LDH),  oxidative stress  (levels of ROS, nitric oxide and GSH and activities of SOD and catalase),  mitochondrial membrane potential and apoptosis (activity of caspase 3 and protein expressions of cyto c, Bax and Bcl-2) were measured. Our results showed that ZSCF could be able to reduce the neurotoxicity of MPP+ and offer neuroprotection in vitro. This protective effect of ZCF might be mediated by its potent antioxidant properties. However, further research is necessary to isolate active compounds and performing preclinical and clinical studies to confirm the neuro-protective effects of ZSCF in PD.


Assuntos
Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ziziphus , 1-Metil-4-fenilpiridínio , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Frutas , Humanos , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Fitoterapia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
6.
BMC Complement Altern Med ; 17(1): 217, 2017 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420370

RESUMO

BACKGROUND: Mitochondrial dysfunction and oxidative stress are the main toxic events leading to dopaminergic neuronal death in Parkinson's disease (PD) and identified as vital objective for therapeutic intercession. This study investigated the neuro-protective effects of the demethoxycurcumin (DMC), a derivative of curcumin against rotenone induced neurotoxicity. METHODS: SH-SY5Y neuroblastoma cells are divided into four experimental groups: untreated cells, cells incubated with rotenone (100 nM), cells treated with DMC (50 nM) + rotenone (100 nM) and DMC alone treated. 24 h after treatment with rotenone and 28 h after treatment with DMC, cell viability was assessed using the MTT assay, and levels of ROS and MMP, plus expression of apoptotic protein were analysed. RESULTS: Rotenone induced cell death in SH-SY5Y cells was significantly reduced by DMC pretreatment in a dose-dependent manner, indicating the potent neuroprotective effects of DMC. Rotenone treatment significantly increases the levels of ROS, loss of MMP, release of Cyt-c and expression of pro-apoptotic markers and decreases the expression of anti-apoptotic markers. CONCLUSIONS: Even though the results of the present study indicated that the DMC may serve as a potent therapeutic agent particularly for the treatment of neurodegenerative diseases like PD, further pre-clinical and clinical studies are required.


Assuntos
Curcumina/análogos & derivados , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Rotenona/toxicidade , Morte Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Curcuma/química , Curcumina/farmacologia , Curcumina/uso terapêutico , Citocromos c/metabolismo , Diarileptanoides , Neurônios Dopaminérgicos/efeitos dos fármacos , Humanos , Inseticidas/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Síndromes Neurotóxicas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Fitoterapia , Extratos Vegetais/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
7.
J Alzheimers Dis ; 60(s1): S209-S220, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28269780

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disorder that mainly affects the aged population and is characterized by the progressive loss of the hippocampal and cortical neurons, which results in memory and cognitive impairments. Trigonella foenum-graecum (fenugreek) has been reported to have hypoglycemic, hypocholesterolemic, hyperinsulinemic and anti-diabetic properties. Traditionally, it was used as a galactagogue and to treat anorexia, fever gastritis, gastric ulcers, and various nervous disorders. However, the neuroprotective effect of fenugreek seed powder against aluminum chloride (AlCl3) induced AD rats has not been analyzed. The result of the present study indicated that the chronic administration of AlCl3 induced significant learning and memory impairments, oxidative stress, and alterations in the protein immunocontent patterns of IDE and CDK5 (enzymes involved in the metabolism of tau and amyloid proteins), pTau, GFAP and Iba-1, IL-1ß, IL-6, TNF-α, iNOS, NF-κB, COX-2, CDK5, BDNF, and STAT3. Our behavioral, biochemical, and molecular studies revealed that the co-administration of fenugreek seed powder significantly attenuated the AlCl3 induced memory deficits, amyloid and tau pathology, oxidative stress, and inflammation in AD rats could be due to the synergistic action of its active components.


Assuntos
Doença de Alzheimer/complicações , Encefalite/tratamento farmacológico , Encefalite/etiologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas tau/metabolismo , Cloreto de Alumínio , Compostos de Alumínio/toxicidade , Doença de Alzheimer/induzido quimicamente , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catalase/metabolismo , Cloretos/toxicidade , Citocinas/metabolismo , Modelos Animais de Doenças , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Extratos Vegetais/química , Ratos , Fator de Transcrição STAT3/metabolismo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Trigonella/química
8.
Physiol Behav ; 173: 132-143, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28185878

RESUMO

Depression is frequently encountered during Parkinson's disease (PD) as a non-motor feature, which has been reported to cause and exaggerate motor deficits and neurodegenerative events in experimental PD models. We studied the effect of chronic mild stress (CMS) (pre, post and pre & post) exposure mediated depression on motor and non-motor symptoms, oxidative stress, inflammation and brain derived neurotrophic factor (BDNF) levels and its related signalling molecules against the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/probenecid (MPTP/p) induced neurotoxicity in mice. CMS and MPTP/p-coexposed C57BL/6 mice exhibited low neuromuscular strength and stride length with enhanced oxidative stress and inflammation as compared to CMS or MPTP/p alone exposed mice. Coexposure diminished the levels of BDNF and expressions of p-TrkB, p-ERK/ERK, p-AKT/AKT and p-CREB in nigrostriatal regions as compared to those of the alone exposure. CMS alone exposed mice showed more anxiety related behaviour with diminished expression of serotonin transporter as compared to MPTP/p alone injected group. Post-stress exposure to MPTP/p mice exhibited lowest motor and reflecting higher anxiety state with greatest enhancement in inflammation and reduction in the protein expression of stress and cell signalling markers as compared to pre and pre & post stress exposed PD mice. However, pre- and pre & post CMS exposed PD animals are more vulnerable to oxidative stress as compared with post-stress experienced MPTP/p mice. CMS mediated depression exacerbates motor/non-motor symptoms in MPTP/p-PD animals by modulating oxidative stress and various signalling molecules. Our results suggested that stress induced NMS can accelerate neurodegenerative processes in the PD in a progressive or expedited manner.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Transtornos Parkinsonianos/fisiopatologia , Estresse Psicológico/fisiopatologia , Adjuvantes Farmacêuticos/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Catalase/metabolismo , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Força Muscular/efeitos dos fármacos , Probenecid/toxicidade , Transdução de Sinais/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Tiobarbitúricos/toxicidade , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
9.
Neurochem Res ; 42(5): 1354-1365, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28181071

RESUMO

Regulation of various signalling (Ras-MAPK, PI3K and AKT) pathways by augmented activity of neurotrophic factors (NTFs) could prevent or halt the progress of dopaminergic loss in Parkinson's disease (PD). Various in vitro and in vivo experimental studies indicated anti-parkinsonic potential of asiatic acid (AA), a pentacyclic triterpene obtained from Centella asiatica. So the present study is designed to determine the neurotrophic effect of AA against 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride/probenecid (MPTP/p) neurotoxicity in mice model of PD. AA treatment for 5 weeks significantly attenuated MPTP/p induced motor abnormalities, dopamine depletion and diminished expressions NTFs and tyrosine kinase receptors (TrKB). We further, revealed that AA treatment significantly inhibited the MPTP/p-induced phosphorylation of MAPK/P38 related proteins such as JNK and ERK. Moreover, AA treatment increased the phosphorylation of PI3K, Akt, GSK-3ß and mTOR, suggesting that AA activated PI3K/Akt/mTOR signalling pathway, which might be the cause of neuroprotection offered by AA. The present findings provided more elaborate in vivo evidences to support the neuroprotective effect of AA on dopaminergic neurons of chronic Parkinson's disease mouse model and the potential of AA to be developed as a possible new therapeutic target to treat PD.


Assuntos
Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/prevenção & controle , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Triterpenos Pentacíclicos/uso terapêutico , Probenecid/toxicidade , Serina-Treonina Quinases TOR/metabolismo , Animais , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Intoxicação por MPTP/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteína Oncogênica v-akt/antagonistas & inibidores , Proteína Oncogênica v-akt/metabolismo , Triterpenos Pentacíclicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR/antagonistas & inibidores , Resultado do Tratamento
10.
Nutr Neurosci ; 20(6): 360-368, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26878879

RESUMO

BACKGROUND/AIMS: Deregulation of metal ion homeostasis has been assumed as one of the key factors in the progression of neurodegenerative diseases. Aluminium (Al) has been believed as a major risk factor for the cause and progression of Alzheimer's disease (AD). In our lab, we have previously reported that hesperidin, a citrus bioflavonoid reversed memory loss caused by aluminium intoxication through attenuating acetylcholine esterase activity and the expression of Amyloid ß biosynthesis related markers. Al has been reported to cause oxidative stress associated apoptotic neuronal loss in the brain. So in the present study, protective effect of hesperidin against aluminium chloride (AlCl3) induced cognitive impairment, oxidative stress and apoptosis was studied. METHODS: Male Wistar rats were divided into control, AlCl3 treated (100 mg/kg., b.w.), AlCl3 and hesperidin (100 mg/kg., b.w.) co-treated and hesperidin alone treated groups. In control and experimental rats, learning and memory impairment were measured by radial arm maze, elevated plus maze and passive avoidance tests. In addition, oxidative stress and expression of pro and anti-apoptotic markers were also evaluated. RESULTS: Intraperitoneal injection of AlCl3 (100 mg/kg., b.w.) for 60 days significantly enhanced the learning and memory deficits, levels of thiobarbituric acid reactive substances and the expression of Bax and diminished the levels of reduced glutathione, activities of enzymatic antioxidants and the expression of B-cell lymphoma-2 (Bcl-2) as compared to control group in the hippocampus, cortex, and cerebellum. Coadministration of hesperidin (100 mg/kg., b.w. oral) for 60 days prevented the cognitive deficits, biochemical anomalies and apoptosis induced by AlCl3 treatment. CONCLUSION: Results of the present study demonstrated that hesperidin could be a potential therapeutic agent in the treatment of oxidative stress and apoptosis associated neurodegenerative diseases including AD.


Assuntos
Doença de Alzheimer/prevenção & controle , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Modelos Animais de Doenças , Hesperidina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Nootrópicos/uso terapêutico , Cloreto de Alumínio , Compostos de Alumínio , Doença de Alzheimer/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Aprendizagem da Esquiva , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Cloretos , Hipocampo/metabolismo , Masculino , Aprendizagem em Labirinto , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Distribuição Aleatória , Ratos Wistar
11.
J Ethnopharmacol ; 194: 20-29, 2016 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-27566203

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Fruits of Phyllanthus emblica Linn. or Emblica officinalis Gaertn. (Phyllanthaceae) are used in Ayurveda, Siddha, Unani, Arabic, Tibetan and various other folk medicinal systems to promote intelligence and memory. Recent study from our lab indicated the neuroprotective effect of tannoids principles of Emblica officinalis (EoT) against memory loss caused by aluminum chloride (AlCl3) intoxication through attenuating acetylcholine esterase activity and the expression of amyloid ß protein biosynthesis related markers. However the molecular mechanism of EoT has not yet been fully elucidated. AIM OF THE STUDY: The aim of the present study was to further investigate the neuroprotective mechanisms of EoT against AlCl3-induced cognitive deficits, tau hyperphosphorylation, oxidative stress and apoptosis. MATERIALS AND METHODS: Rats were treated with AlCl3 for 60 days to induce biochemical and physiological abnormalities similar to AD patients. AD rats were treated with EoT (100mg/kg., bw. oral) for 60 days. For the examination of neuroprotective effect of EoT, behavior analysis, biochemical estimations and western blot were performed in the hippocampus and cortex of control, EoT treated and untreated AD rats. RESULTS: Intraperitoneal injections of AlCl3 (100mg/kg., b.w.) for 60 days enhanced the learning and memory deficits, levels of TBARS and diminished the levels of reduced glutathione and activities of enzymatic antioxidants as compared to control group. Moreover toxicity of AlCl3 is accompanied by the enhanced expressions of Bax, caspases-3,-9, cytosolic cytochrome c (cyto c), and pTau along with diminished expressions of Bcl-2, mitochondrial cyto c, pGSK-3ß and pAkt. Coadministration of EoT nullified the cognitive deficits, biochemical abnormalities and apoptosis induced by AlCl3 treatment. Moreover EoT prevents tau hyperphosphorylation by targeting the GSK-3ß/Akt signaling pathway. CONCLUSIONS: This study confirms that EoT would be used as a potential drug candidate for AD and other tau pathology-related neuronal degenerative diseases.


Assuntos
Compostos de Alumínio/toxicidade , Doença de Alzheimer/terapia , Apoptose/efeitos dos fármacos , Cloretos/toxicidade , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/metabolismo , Estresse Oxidativo , Phyllanthus emblica/química , Plantas Medicinais , Proteínas tau/metabolismo , Cloreto de Alumínio , Animais , Etnofarmacologia , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
12.
Nutr Neurosci ; 19(6): 269-78, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25842984

RESUMO

BACKGROUND/AIMS: Emblica officinalis is mentioned as a maharasayana in many Ayurvedic texts and promotes intelligence, memory, freedom from disease, longevity, and strength of the senses. The present study has been designed to explore the memory-enhancing effect of the tannoid principles of E. officinalis (EoT) at the biochemical, anatomical, behavioral, and molecular levels against aluminum chloride (AlCl3) induced Alzheimer's disease (AD) in rats. Aluminum is reported to have an important role in the etiology, pathogenesis, and development of AD. METHODS: Male Wistar rats were divided into control, AlCl3 treated, AlCl3 and EoT (50, 100, and 200 mg/kg bw) co-treated, and EoT (200 mg/kg bw) alone treated groups. In control and experimental rats, behavior tests including water maze and open field test, estimation of aluminum, assay of acetylcholinesterase (AChE) activity, and expression of amyloidogenic proteins were performed. RESULTS: Intraperitonial injection of AlCl3 (100 mg/kg bw) for 60 days significantly elevated the concentration of aluminum (Al), activity of AChE and protein expressions of amyloid precursor protein, A-beta1-42, beta-, and gamma-secretases as compared to control group in hippocampus and cortex. Co-administration of EoT orally to AlCl3 rats for 60 days significantly revert back the Al concentration, AChE activity, and A-beta synthesis-related molecules in the studied brain regions. The spatial learning, memory, and locomotor impairments observed in AlCl3 treated rats were significantly attenuated by EoT. CONCLUSION: Therefore, EoT may be a promising therapy in ameliorating neurotoxicity of aluminum, however further studies are warranted to elucidate the exact mechanism of action of EoT.


Assuntos
Doença de Alzheimer/prevenção & controle , Disfunção Cognitiva/prevenção & controle , Modelos Animais de Doenças , Fármacos Neuroprotetores/uso terapêutico , Phyllanthus emblica/química , Extratos Vegetais/uso terapêutico , Placa Amiloide/prevenção & controle , Cloreto de Alumínio , Compostos de Alumínio , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Biomarcadores/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Cloretos , Disfunção Cognitiva/etiologia , Suplementos Nutricionais/análise , Etnofarmacologia , Frutas/química , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Ayurveda , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Placa Amiloide/etiologia , Distribuição Aleatória , Ratos Wistar , Taninos/administração & dosagem , Taninos/efeitos adversos , Taninos/análise , Taninos/uso terapêutico
13.
Artigo em Inglês | MEDLINE | ID: mdl-26664453

RESUMO

Vanillin, a phenolic compound, has been reported to offer neuroprotection against experimental Huntington's disease and global ischemia by virtue of its antioxidant, anti-inflammatory, and antiapoptotic properties. The present study aims to elucidate the underlying neuroprotective mechanism of vanillin in rotenone induced neurotoxicity. Cell viability was assessed by exposing SH-SY5Y cells to various concentrations of rotenone (5-200 nM) for 24 h. The therapeutic effectiveness of vanillin against rotenone was measured by pretreatment of vanillin at various concentrations (5-200 nM) and then incubation with rotenone (100 nM). Using effective dose of vanillin (100 nM), mitochondrial membrane potential, levels of reactive oxygen species (ROS), and expression patterns of apoptotic markers were assessed. Toxicity of rotenone was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, release of cyt-c, and enhanced expressions of proapoptotic and downregulation of antiapoptotic indices via the upregulation of p38 and JNK-MAPK pathway proteins. Our results indicated that the pretreatment of vanillin attenuated rotenone induced mitochondrial dysfunction, oxidative stress, and apoptosis. Thus, vanillin may serve as a potent therapeutic agent in the future by virtue of its multiple pharmacological properties in the treatment of neurodegenerative diseases including PD.

14.
Neurochem Res ; 40(6): 1283-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25944473

RESUMO

Numerous studies indicating that natural plant sources and their active phytochemicals offer protection to the pathological processes related to the development of neurogenerative diseases including Parkinson's disease (PD). In the present study, the neuro protective efficacy of dietary supplementation of walnut (6 %) for 28 days was examined in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (i.p., 20 mg/kg body weight/day) for last four consecutive days. MPTP injection diminished the levels of GSH, dopamine and metabolites along with decreased activities of GPx and mitochondrial complex I. Further, the levels of TBARS and enzymatic antioxidants such as SOD and catalase, MAO-B activities were enhanced by MPTP treatment. Behavioral deficits and lowered TH expression are also proved MPTP induced neurotoxicity. Dietary supplementation of walnut attenuated MPTP-induced impairment in PD mice might be by its MAO-B inhibitory, antioxidant and mitochondrial protective actions. To find out the exact mechanism of action walnut on PD mice warrants further extensive studies.


Assuntos
Suplementos Nutricionais , Juglans/química , Intoxicação por MPTP/tratamento farmacológico , Transtornos Parkinsonianos/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Animais , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Glutationa/metabolismo , Intoxicação por MPTP/psicologia , Camundongos , Inibidores da Monoaminoxidase/farmacologia , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/psicologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA