Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
mBio ; 14(5): e0181023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737622

RESUMO

IMPORTANCE: Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited, and the development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally active FDA-approved therapy. This research advances the development of much-needed newer antifungal treatment options with novel mechanisms of action.


Assuntos
Cryptococcus neoformans , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Micoses/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
J Proteome Res ; 17(2): 780-793, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251506

RESUMO

Calcineurin is a critical cell-signaling protein that orchestrates growth, stress response, virulence, and antifungal drug resistance in several fungal pathogens. Blocking calcineurin signaling increases the efficacy of several currently available antifungals and suppresses drug resistance. We demonstrate the application of a novel scanning quadrupole DIA method for the analysis of changes in the proteins coimmunoprecipitated with calcineurin during therapeutic antifungal drug treatments of the deadly human fungal pathogen Aspergillus fumigatus. Our experimental design afforded an assessment of the precision of the method as demonstrated by peptide- and protein-centric analysis from eight replicates of the study pool QC samples. Two distinct classes of clinically relevant antifungal drugs that are guideline recommended for the treatment of invasive "aspergillosis" caused by Aspergillus fumigatus, the azoles (voriconazole) and the echinocandins (caspofungin and micafungin), which specifically target the fungal plasma membrane and the fungal cell wall, respectively, were chosen to distinguish variations occurring in the proteins coimmunoprecipitated with calcineurin. Novel potential interactors were identified in response to the different drug treatments that are indicative of the possible role for calcineurin in regulating these effectors. Notably, treatment with voriconazole showed increased immunoprecipitation of key proteins involved in membrane ergosterol biosynthesis with calcineurin. In contrast, echinocandin (caspofungin or micafungin) treatments caused increased immunoprecipitation of proteins involved in cell-wall biosynthesis and septation. Furthermore, abundant coimmunoprecipitation of ribosomal proteins with calcineurin occurred exclusively in echinocandins treatment, indicating reprogramming of cellular growth mechanisms during different antifungal drug treatments. While variations in the observed calcineurin immunoprecipitated proteins may also be due to changes in their expression levels under different drug treatments, this study suggests an important role for calcineurin-dependent cellular mechanisms in response to antifungal treatment of A. fumigatus that warrants future studies.


Assuntos
Aspergillus fumigatus/efeitos dos fármacos , Calcineurina/isolamento & purificação , Proteínas Fúngicas/isolamento & purificação , Proteínas Ribossômicas/isolamento & purificação , Voriconazol/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Caspofungina , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Parede Celular/química , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Cromatografia Líquida/métodos , Equinocandinas/farmacologia , Ergosterol/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Ontologia Genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Lipopeptídeos/farmacologia , Micafungina , Anotação de Sequência Molecular , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
Virulence ; 8(2): 186-197, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-27325145

RESUMO

Increases in the incidence and mortality due to the major invasive fungal infections such as aspergillosis, candidiasis and cryptococcosis caused by the species of Aspergillus, Candida and Cryptococcus, are a growing threat to the immunosuppressed patient population. In addition to the limited armamentarium of the current classes of antifungal agents available (pyrimidine analogs, polyenes, azoles, and echinocandins), their toxicity, efficacy and the emergence of resistance are major bottlenecks limiting successful patient outcomes. Although these drugs target distinct fungal pathways, there is an urgent need to develop new antifungals that are more efficacious, fungal-specific, with reduced or no toxicity and simultaneously do not induce resistance. Here we review several lines of evidence which indicate that the calcineurin signaling pathway, a target of the immunosuppressive drugs FK506 and cyclosporine A, orchestrates growth, virulence and drug resistance in a variety of fungal pathogens and can be exploited for novel antifungal drug development.


Assuntos
Antifúngicos/uso terapêutico , Inibidores de Calcineurina/uso terapêutico , Calcineurina/metabolismo , Descoberta de Drogas/métodos , Farmacorresistência Fúngica , Fungos/patogenicidade , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Inibidores de Calcineurina/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Ciclosporina/uso terapêutico , Equinocandinas/uso terapêutico , Fungos/efeitos dos fármacos , Fungos/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Transdução de Sinais/efeitos dos fármacos , Tacrolimo/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Virulência
4.
Antimicrob Agents Chemother ; 59(8): 4946-55, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055379

RESUMO

The echinocandin antifungal drug caspofungin at high concentrations reverses the growth inhibition of Aspergillus fumigatus, a phenomenon known as the "paradoxical effect," which is not consistently observed with other echinocandins (micafungin and anidulafungin). Previous studies of A. fumigatus revealed the loss of the paradoxical effect following pharmacological or genetic inhibition of calcineurin, yet the underlying mechanism is poorly understood. Here, we utilized a codon-optimized bioluminescent Ca(2+) reporter aequorin expression system in A. fumigatus and showed that caspofungin elicits a transient increase in cytosolic free Ca(2+) ([Ca(2+)]c) in the fungus that acts as the initial trigger of the paradoxical effect by activating calmodulin-calcineurin signaling. While the increase in [Ca(2+)]c was also observed upon treatment with micafungin, another echinocandin without the paradoxical effect, a higher [Ca(2+)]c increase was noted with the paradoxical-growth concentration of caspofungin. Treatments with a Ca(2+)-selective chelator, BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid], or the L-type Ca(2+) channel blocker verapamil abolished caspofungin-mediated paradoxical growth in both the wild-type and the echinocandin-resistant (EMFR-S678P) strains. Concomitant with increased [Ca(2+)]c levels at higher concentrations of caspofungin, calmodulin and calcineurin gene expression was enhanced. Phosphoproteomic analysis revealed that calcineurin is activated through phosphorylation at its serine-proline-rich region (SPRR), a domain previously shown to be essential for regulation of hyphal growth, only at a paradoxical-growth concentration of caspofungin. Our results indicate that as opposed to micafungin, the increased [Ca(2+)]c at high concentrations of caspofungin activates calmodulin-calcineurin signaling at both a transcriptional and a posttranslational level and ultimately leads to paradoxical fungal growth.


Assuntos
Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Equinocandinas/farmacologia , Fosforilação/fisiologia , Anidulafungina , Antifúngicos/farmacologia , Caspofungina , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Proteínas Fúngicas/metabolismo , Lipopeptídeos/farmacologia , Micafungina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA