Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 194: 182-192, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423388

RESUMO

Iron (Fe) deficiency causes reduced growth and yield in broccoli. This study elucidates how sodium nitroprusside (SNP), known as nitric oxide (NO) donor, mitigates the retardation caused by Fe deficiency in broccoli. The SNP caused substantial nitric oxide accumulation in the roots of Fe-deficient plants, which resulted in a significant improvement in chlorophyll levels, photosynthetic efficiency, and morphological growth parameters, showing that it has a favorable influence on recovering broccoli health. Ferric reductase activity and the expression of BoFRO1 (ferric chelate reductase) gene in roots were consistently increased by SNP under Fe deficiency, which likely resulted in increased Fe mobilization. Furthermore, proton (H+) extrusion and BoHA2 (H+-ATPase 2) expression were significantly increased, suggesting that they may be involved in lowering rhizospheric pH to restore Fe mobilization in roots of bicarbonate-treated broccoli plants. The levels of Fe in root and shoot tissues and the expression of BoIRT1 (Fe-regulated transporter) both increased dramatically after SNP supplementation under Fe deprivation. Furthermore, SNP-induced increase in citrate and malate concentrations suggested a role of NO in improved Fe chelation in Fe-deficient broccoli. A NO scavenger (cPTIO) ceased the elevated FCR activity and IAA (indole-3-acetic acid) concentration in Fe-starved plants treated with SNP. These findings suggest that SNP may play a role in initiating Fe availability by elevated IAA concentration and BoEIR1 (auxin efflux carrier) expression in the roots of broccoli during Fe shortage. Therefore, SNP may improve Fe availability and mobilization by increasing Strategy-I Fe uptake pathways, which may help broccoli tolerate Fe deficiency.


Assuntos
Brassica , Deficiências de Ferro , Óxido Nítrico/metabolismo , Brassica/metabolismo , Ferro/metabolismo , Doadores de Óxido Nítrico/farmacologia , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
J Appl Microbiol ; 133(5): 2760-2778, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35665578

RESUMO

AIMS: Iron (Fe) deficiency in soil is a continuing problem for soybean (Glycine max L.) production, partly as a result of continuing climate change. This study elucidates how Trichoderma harzianum strain T22 (TH) mitigates growth retardation associated with Fe-deficiency in a highly sensitive soybean cultivar. METHODS AND RESULTS: Soil TH supplementation led to mycelial colonization and the presence of UAOX1 gene in roots that caused substantial improvement in chlorophyll score, photosynthetic efficiency and morphological parameters, indicating a positive influence on soybean health. Although rhizosphere acidification was found to be a common feature of Fe-deficient soybean, the upregulation of Fe-reductase activity (GmFRO2) and total phenol secretion were two of the mechanisms that substantially increased the Fe availability by TH. Heat-killed TH applied to soil caused no improvement in photosynthetic attributes and Fe-reductase activity, confirming the active role of TH in mitigating Fe-deficiency. Consistent increases in tissue Fe content and increased Fe-transporter (GmIRT1, GmNRAMP2a, GmNRAMP2b and GmNRAMP7) mRNA levels in roots following TH supplementation were observed only under Fe-deprivation. Root cell death, electrolyte leakage, superoxide (O2 •- ) and hydrogen peroxide (H2 O2 ) substantially declined due to TH in Fe-deprived plants. Further, the elevation of citrate and malate concentration along with the expression of citrate synthase (GmCs) and malate synthase (GmMs) caused by TH suggest improved chelation of Fe in Fe-deficient plants. Results also suggest that TH has a role in triggering antioxidant defence by increasing the activity of glutathione reductase (GR) along with elevated S-metabolites (glutathione and methionine) to stabilize redox status under Fe-deficiency. CONCLUSIONS: TH increases the availability and mobilization of Fe by inducing Fe-uptake pathways, which appears to help provide resistance to oxidative stress associated with Fe-shortage in soybean. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings indicate that while Fe deficiency does not affect the rate or degree of TH hyphal association in soybean roots, the beneficial effects of TH alone may be Fe deficiency-dependent.


Assuntos
Glycine max , Deficiências de Ferro , Glycine max/metabolismo , Malatos/metabolismo , Antioxidantes/metabolismo , Peróxido de Hidrogênio/metabolismo , Glutationa Redutase/metabolismo , Raízes de Plantas/metabolismo , Superóxidos/metabolismo , Citrato (si)-Sintase/metabolismo , Malato Sintase/metabolismo , Clorofila/metabolismo , Ferro/metabolismo , Glutationa/metabolismo , Fenóis/metabolismo , Solo , Citratos , Metionina/metabolismo , RNA Mensageiro/metabolismo
3.
Plant Physiol Biochem ; 166: 448-458, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34161881

RESUMO

Cadmium (Cd) toxicity is a form of soil contamination that causes losses in plant growth and yield. Understanding the effects of Cd-induced changes in physiological and cellular processes will help scientists develop better scientific strategies for sugar beet plant improvement. Cd toxicity triggered a substantial decrease in morphological parameters and total soluble protein in sugar beets, as well as membrane damage and cell death. Furthermore, the SPAD score and photosynthetic OJIP parameters in leaves were severely affected due to Cd stress. This was correlated with the decreased FCR activity and BvIRT1 expression in roots, suggesting the adverse effect of Cd in Fe acquisition in sugar beet. Our findings also revealed that BvHMA3 and BvNRAMP3 were upregulated in Cd-exposed roots, indicating that these genes might be involved in Cd uptake in sugar beet. In silico analysis of BvHMA3 and BvNRAMP3 proteins showed close partnerships with several Arabidopsis genes mainly linked to metal tolerance protein, cation diffusion facilitator, vacuolar metal transporter, and vacuolar Fe transporter. Subsequently, Cd-exposed sugar beet showed severe sensitivity to oxidative damages resulted in elevated H2O2 and O2.- without possessed efficient antioxidant defense. Finally, growth retardation in Cd-exposed sugar beets is linked to photosynthetic inefficiency caused by low Fe levels and oxidative stress in cells. These results may be used to improve Cd-sensitive sugar beet plants by breeding or transgenic programs.


Assuntos
Beta vulgaris , Cádmio/toxicidade , Peróxido de Hidrogênio , Estresse Oxidativo , Melhoramento Vegetal , Raízes de Plantas , Açúcares
4.
Physiol Plant ; 173(1): 352-368, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33848008

RESUMO

Cadmium (Cd) is toxic; however, whether silicon (Si) alleviates Cd toxicity was never studied in sugar beet. The study was conducted on 2-week-old sugar beet cultivated in the presence or absence of Cd (10 µM CdSO4 ) and Si (1 mM Na2 SiO3 ) in hydroponic conditions. The morphological impairment and cellular damages observed in sugar beet upon Cd toxicity were entirely reversed due to Si. Si substantially restored the energy-providing ability, absorbed energy flux, and electron transport toward PSII, which might be correlated with the upregulation of BvIRT1 and ferric chelate reductase activity leading to the restoration of Fe status in Cd-stressed sugar beet. Although Si caused a reduction of shoot Cd, the root Cd substantially increased under Cd stress, a significant part of which was retained in the cell wall rather than in the root vacuole. While the concentration of phytochelatin and the expression of BvPCS3 (PHYTOCHELATIN SYNTHASE 3) showed no changes upon Si exposure, Si induced the expression of BvHIPP32 (HEAVY METAL-ASSOCIATED ISOPRENYLATED PLANT PROTEIN 32) in the Cd-exposed root. The BvHIPP32 and AtHIPP32 metallochaperone proteins are localized in the cell wall and they share similar sequence alignment, physiochemical properties, secondary structure, cellular localization, motif locations, domain association, and metal-binding site (cd00371) linked to the metallochaperone-like protein. It suggests that Si reduces the Cd level in shoot by retaining the excess Cd in the cell wall of roots due to the induction of BvHIPP32 gene. Also, Si stimulates glutathione-related antioxidants along with the BvGST23 expression, inferring an ascorbate-glutathione ROS detoxification pathway in Cd-exposed plants.


Assuntos
Beta vulgaris , Cádmio , Beta vulgaris/metabolismo , Cádmio/toxicidade , Parede Celular/metabolismo , Glutationa/metabolismo , Metalochaperonas , Oxirredução , Raízes de Plantas/metabolismo , Silício/farmacologia , Açúcares
5.
Int J Mol Sci ; 21(6)2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32210097

RESUMO

Iron (Fe)-deficiency is one of the major constraints affecting growth, yield and nutritional quality in plants. This study was performed to elucidate how arbuscular mycorrhizal fungi (AMF) alleviate Fe-deficiency retardation in alfalfa (Medicago sativa L.). AMF supplementation improved plant biomass, chlorophyll score, Fv/Fm (quantum efficiency of photosystem II), and Pi_ABS (photosynthesis performance index), and reduced cell death, electrolyte leakage, and hydrogen peroxide accumulation in alfalfa. Moreover, AMF enhanced ferric chelate reductase activity as well as Fe, Zn, S and P in alfalfa under Fe-deficiency. Although Fe-transporters (MsIRT1 and MsNramp1) did not induce in root but MsFRO1 significantly induced by AMF under Fe deficiency in roots, suggesting that AMF-mediated Fe enhancement is related to the bioavailability of Fe at rhizosphere/root apoplast rather than the upregulation of Fe transporters under Fe deficiency in alfalfa. Several S-transporters (MsSULTR1;1, MsSULTR1;2, MsSULTR1;3, and MsSULTR3;1) markedly increased following AMF supplementation with or without Fe-deficiency alfalfa. Our study further suggests that Fe uptake system is independently influenced by AMF regardless of the S status in alfalfa. However, the increase of S in alfalfa is correlated with the elevation of GR and S-metabolites (glutathione and cysteine) associated with antioxidant defense under Fe deficiency.


Assuntos
Antioxidantes/metabolismo , Deficiências de Ferro , Ferro/metabolismo , Medicago sativa/metabolismo , Medicago sativa/microbiologia , Micorrizas/fisiologia , Enxofre/metabolismo , Simbiose , Medicago sativa/crescimento & desenvolvimento , Minerais/metabolismo , Estresse Oxidativo , Fenótipo
6.
Plant Physiol Biochem ; 150: 254-262, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32171164

RESUMO

Iron (Fe)-deficiency causes chlorosis and growth inhibition in sunflower, an important commercial crop. This study examines whether and how arbuscular mycorrhizal fungi (AMF) ameliorate Fe-deficiency symptoms in Fe-deficiency sensitive sunflower plants. AMF supplementation showed a significant improvement in plant biomass, chlorophyll score, Fv/Fm (quantum efficiency of photosystem II), and Pi_ABS (photosynthesis performance index), suggesting its beneficial effect under Fe deficiency. This AM-driven amelioration of Fe deficiency was further supported by the improvement of biochemical stress indicators, such as cell death, electrolyte leakage, superoxide anion, and hydrogen peroxide. In this study, the AMF supplementations resulted in significant improvement in Fe as well as Zn concentrations in root and shoot of sunflower under Fe deficiency. One of the primary Strategy-I responses, ferric reductase activity along with the expression of its respective gene (HaFRO1), significantly increased in roots due to AMF ensuring Fe availability in the rhizosphere under Fe deficiency. Our qPCR analysis also showed a significant upregulation of HaIRT1, HaNramp1, and HaZIP1 in roots of sunflower in the presence of AMF, suggesting that Fe and Zn transporters are concurrently involved with AMF-mediated alleviation of Fe deficiency. Further, AMF accelerates the activities of CAT and SOD, predominantly in roots to protect sunflower plants from Fe-deficiency reactive oxygen species (ROS). This study unveils the mechanistic basis of AMF to limit Fe deficiency retardation in sunflower.


Assuntos
Helianthus , Micorrizas , Eletrólitos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Helianthus/metabolismo , Helianthus/microbiologia , Deficiências de Ferro , Micorrizas/fisiologia , Oxirredutases/metabolismo
7.
Int J Phytoremediation ; 20(8): 796-804, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29775096

RESUMO

Arsenic (As) is a phytotoxic element causing health hazards. This work investigates whether and how silicon (Si) alleviates As toxicity in wheat. The addition of Si under As-stress significantly improved morphophysiological characteristics, total protein, and membrane stability compared to As-stressed plants, suggesting that Si does have critical roles in As detoxification in wheat. Analysis of arsenate reductase activity and phytosiderophore (PS) release reveals their no involvement in the Si-mediated alleviation of As in wheat. Furthermore, Si supplementation in As-stressed plants showed a significant increase of As in roots but not in shoots compared with the plants grown under As stress. Further, gene expression analysis of two chelating molecules, TaPCS1 (phytochelatin synthase) and TaMT1 (metallothionein synthase) showed significant induction due to Si application under As stress compared with As-stressed plants. It is consistent with the physiological observations and suggests that alleviation of As toxicity in rice might be associated with As sequestration in roots leading to reduced As translocation in shoots. Furthermore, increased catalase, peroxidase, and glutathione reductase activities in roots imply the active involvement of reactive oxygen species scavenging for protecting wheat plants from As-induced oxidative injury. The study provides mechanistic evidence on the beneficial effect of Si on As toxicity in wheat plants.


Assuntos
Arsênio , Triticum , Biodegradação Ambiental , Espécies Reativas de Oxigênio , Silício
8.
Int J Phytoremediation ; 19(3): 246-253, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-27434775

RESUMO

High chromium (Cr) in rice causes reduced yield and health hazards. This work investigates how Si alleviates Cr toxicity in rice. Addition of Si under Cr stress restored the growth parameters, total protein content, and membrane stability along with reduced Cr content in shoots, confirming that Si plays critical roles in Cr detoxification in rice. However, Si supplementation under Cr stress caused no significant changes in root Cr content but decreased shoot Cr concentrations compared with Cr-stressed plants, indicating that alleviation of Cr toxicity might be associated with Cr sequestration in roots. Further, concentration of Fe and expression of Fe transporter (OsIRT1) showed no significant changes due to Si supplementation under Cr stress, implying that Fe regulation is not involved with Si-mediated mitigation of Cr toxicity in rice. Further, phytochelatin accumulation and OsPCS1 (phytochelatin synthase) transcripts strongly induced due to the dual treatment of Si and Cr compared with Cr-stressed plants, suggesting that phytochelatin might bind to Cr, which leads to vacuolar sequestration in roots. Furthermore, increased glutathione reductase activity in roots implies that active involvement of ROS scavenging partially ameliorates Cr toxicity in rice plants. The study illustrates first evidences on the effect of Si alleviating Cr toxicity in rice plants.


Assuntos
Cromo/metabolismo , Oryza/metabolismo , Fitoquelatinas/metabolismo , Raízes de Plantas/metabolismo , Silício/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Oryza/crescimento & desenvolvimento
9.
Ecotoxicol Environ Saf ; 135: 165-172, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27736676

RESUMO

Cadmium (Cd) is an important phytotoxic element causing health hazards. This work investigates whether and how silicon (Si) influences the alleviation of Cd toxicity in field peas at biochemical and molecular level. The addition of Si in Cd-stressed plants noticeably increased growth and development as well as total protein and membrane stability of Cd-stressed plants, suggesting that Si does have critical roles in Cd detoxification in peas. Furthermore, Si supplementation in Cd-stressed plants showed simultaneous significant increase and decrease of Cd and Fe in roots and shoots, respectively, compared with Cd-stressed plants. At molecular level, GSH1 (phytochelatin precursor) and MTA (metallothionein) transcripts predominantly expressed in roots and strongly induced due to Si supplementation in Cd-stressed plants compared with Cd-free conditions, suggesting that these chelating agents may bind to Cd leading to vacuolar sequestration in roots. Furthermore, pea Fe transporter (RIT1) showed downregulation in shoots when plants were treated with Si along with Cd compared with Cd-treated conditions. It is consistent with the physiological observations and supports the conclusion that alleviation of Cd toxicity in pea plants might be associated with Cd sequestration in roots and reduced Cd translocation in shoots through the regulation of Fe transport. Furthermore, increased CAT, POD, SOD and GR activity along with elevated S-metabolites (cysteine, methionine, glutathione) implies the active involvement of ROS scavenging and plays, at least in part, to the Si-mediated alleviation of Cd toxicity in pea. The study provides first mechanistic evidence on the beneficial effect of Si on Cd toxicity in pea plants.


Assuntos
Cádmio/metabolismo , Pisum sativum/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Silício/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Oligoelementos/farmacologia , Cádmio/toxicidade , Catalase/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Ferro/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Metionina/metabolismo , Pisum sativum/crescimento & desenvolvimento , Peroxidase/metabolismo , Fitoquelatinas/genética , Fitoquelatinas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
10.
Int J Biol Macromol ; 84: 62-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26666429

RESUMO

Chitinases are a group of enzymes that show differences in their molecular structure, substrate specificity, and catalytic mechanism and widely found in organisms like bacteria, yeasts, fungi, arthropods actinomycetes, plants and humans. A novel chitinase enzyme (designated as TDSC) was purified from Trichosanthes dioica seed with a molecular mass of 39±1 kDa in the presence and absence of ß-mercaptoethanol. The enzyme was a glycoprotein in nature containing 8% neutral sugar. The N-terminal sequence was determined to be EINGGGA which did not match with other proteins. Amino acid analysis performed by LC-MS revealed that the protein was rich in leucine. The enzyme was stable at a wide range of pH (5.0-11.0) and temperature (30-90 °C). Chitinase activity was little bit inhibited in the presence of chelating agent EDTA (ethylenediaminetetraaceticacid), urea and Ca(2+). A strong fluorescence quenching effect was found when dithiothreitol and sodium dodecyl sulfate were added to the enzyme. TDSC showed antifungal activity against Aspergillus niger and Trichoderma sp. as tested by MTT assay and disc diffusion method.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Quitinases/química , Quitinases/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sementes/química , Trichosanthes/química , Sequência de Aminoácidos , Quitinases/isolamento & purificação , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Extratos Vegetais/isolamento & purificação , Domínios e Motivos de Interação entre Proteínas , Sementes/enzimologia , Especificidade por Substrato , Temperatura
11.
Avicenna J Phytomed ; 4(1): 31-42, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25050299

RESUMO

OBJECTIVE: Methanol extract of bran and unpolished grain of two traditional aromatic rice genotypes viz. Kalijira and Chinigura were assayed for their activity on the growth and initiation of crown-gall tumors on potato disks. MATERIALS AND METHODS: Three Agrobacterium tumefaciens (A. tumefaciens) strain AtSl0105, AtTa0112, and AtAc0114 were used as the tumor forming agent. Collected rice was separated to bran and unpolished grain by different milling processes and made into fine powder before extracting using methanol. Antitumor assay of plant extracts was performed according to standard potato disc bioassay. Disc diffusion assay (Kirby-Bauer Method) was used to screen A. tumefaciens sensitivity test. RESULTS: The results demonstrated a high correlation between the ability of aromatic rice to inhibit the initiation and growth of crown-gall tumors on potato disks. Maximum tumor inhibitions were observed against the strain AtSl0105 by Kalijira bran (73.91%) and Chinigura bran (69.56%). Both unpolished grains showed significant effect (Kalijira 57.43%, Chinigura 55.53%) to inhibit the tumor. CONCLUSION: It can be concluded that aromatic rice (Kalijira and Chinigura) might be a potential source of antitumor agent that can be used for further drug development for tumor treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA