Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2020: 4678252, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123312

RESUMO

Nrf2 is a master regulator of antioxidant cellular defence, and agents activating the Nrf2 pathway have been tested in various diseases. However, unexpected side effects of cardiovascular nature reported for bardoxolone methyl in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease (the BEACON trial) still have not been fully explained. Here, we aimed to characterize the effects of bardoxolone methyl compared with other Nrf2 activators-dimethyl fumarate and L-sulforaphane-on human microvascular endothelium. Endothelial toxicity, bioenergetics, mitochondrial membrane potential, endothelin-1 (ET-1) release, endothelial permeability, Nrf2 expression, and ROS production were assessed in human microvascular endothelial cells (HMEC-1) incubated for 3 and 24 hours with 100 nM-5 µM of either bardoxolone methyl, dimethyl fumarate, or L-sulforaphane. Three-hour incubation with bardoxolone methyl (100 nM-5 µM), although not toxic to endothelial cells, significantly affected endothelial bioenergetics by decreasing mitochondrial membrane potential (concentrations ≥ 3 µM), decreasing spare respiratory capacity (concentrations ≥ 1 µM), and increasing proton leak (concentrations ≥ 500 nM), while dimethyl fumarate and L-sulforaphane did not exert such actions. Bardoxolone methyl at concentrations ≥ 3 µM also decreased cellular viability and induced necrosis and apoptosis in the endothelium upon 24-hour incubation. In turn, endothelin-1 decreased permeability in endothelial cells in picomolar range, while bardoxolone methyl decreased ET-1 release and increased endothelial permeability even after short-term (3 hours) incubation. In conclusion, despite that all three Nrf2 activators exerted some beneficial effects on the endothelium, as evidenced by a decrease in ROS production, bardoxolone methyl, the most potent Nrf2 activator among the tested compounds, displayed a distinct endothelial profile of activity comprising detrimental effects on mitochondria and cellular viability and suppression of endothelial ET-1 release possibly interfering with ET-1-dependent local regulation of endothelial permeability.


Assuntos
Endotelina-1/metabolismo , Ácido Oleanólico/análogos & derivados , Permeabilidade/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fumarato de Dimetilo/farmacologia , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Isotiocianatos/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microvasos/citologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sulfóxidos/farmacologia
2.
Free Radic Biol Med ; 97: 320-329, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27338854

RESUMO

To elucidate the mechanism of age-related changes in antioxidant and photoprotective properties of human retinal pigment epithelium (RPE) melanosomes, the effect of in vitro photoaging of bovine RPE melanosomes was examined employing an array of complementary spectroscopic and analytical methods. Electron paramagnetic resonance (EPR) spectroscopy, saturation recovery EPR, atomic force microscopy (AFM) and dynamic light scattering (DLS) were used to determine melanin content of control and photobleached melanosomes, and to monitor changes in their morphology. Methylene blue (MB), TEMPO choline, dysprosium(III) ions and singlet oxygen were employed as molecular probes to characterize the efficiency of control and photobleached melanosomes to interact with different reagents. EPR oximetry, UV-vis absorption spectroscopy, iodometric assay of lipid hydroperoxides and time-resolved singlet oxygen phosphorescence were used to analyze the efficiency of photobleached and untreated melanosomes to inhibit MB-photosensitized oxidation of liposomal lipids. The obtained results revealed that, compared to untreated melanosomes, moderately photobleached melanosomes protected unsaturated lipids less efficiently against photosensitized peroxidiation, while weakly photobleached melanosomes were actually better antioxidant and photoprotective agents. The observed changes could be attributed to two effects - modification of the melanosome morphology and oxidative degradation of the melanin functional groups induced by different degree of photobleaching. While the former increases the accessibility of melanin nanoaggregates to reagents, the latter reduces the efficiency of melanin to interact with chemical and physical agents.


Assuntos
Melanossomas/ultraestrutura , Animais , Bovinos , Peroxidação de Lipídeos , Melaninas/metabolismo , Melanossomas/efeitos da radiação , Azul de Metileno/farmacologia , Consumo de Oxigênio , Fotodegradação , Epitélio Pigmentado da Retina/fisiologia , Epitélio Pigmentado da Retina/efeitos da radiação , Epitélio Pigmentado da Retina/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA