Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genomics ; 114(4): 110440, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35905835

RESUMO

The moth Heortia vitessoides Moore (Lepidoptera: Crambidae) is a major pest of ecologically, commercially and culturally important agarwood-producing trees in the genus Aquilaria. In particular, H. vitessoides is one of the most destructive defoliating pests of the incense tree Aquilaria sinesis, which produces a valuable fragrant wood used as incense and in traditional Chinese medicine [33]. Nevertheless, a genomic resource for H. vitessoides is lacking. Here, we present a chromosomal-level assembly for H. vitessoides, consisting of a 517 megabase (Mb) genome assembly with high physical contiguity (scaffold N50 of 18.2 Mb) and high completeness (97.9% complete BUSCO score). To aid gene annotation, 8 messenger RNA transcriptomes from different developmental stages were generated, and a total of 16,421 gene models were predicted. Expansion of gene families involved in xenobiotic metabolism and development were detected, including duplications of cytosolic sulfotransferase (SULT) genes shared among lepidopterans. In addition, small RNA sequencing of 5 developmental stages of H. vitessoides facilitated the identification of 85 lepidopteran conserved microRNAs, 94 lineage-specific microRNAs, as well as several microRNA clusters. A large proportion of the H. vitessoides genome consists of repeats, with a 29.12% total genomic contribution from transposable elements, of which long interspersed nuclear elements (LINEs) are the dominant component (17.41%). A sharp decrease in the genome-wide percentage of LINEs with lower levels of genetic distance to family consensus sequences suggests that LINE activity has peaked in H. vitessoides. In contrast, opposing patterns suggest a substantial recent increase in DNA and LTR element activity. Together with annotations of essential sesquiterpenoid hormonal pathways, neuropeptides, microRNAs and transposable elements, the high-quality genomic and transcriptomic resources we provide for the economically important moth H. vitessoides provide a platform for the development of genomic approaches to pest management, and contribute to addressing fundamental research questions in Lepidoptera.


Assuntos
Lepidópteros , MicroRNAs , Mariposas , Animais , Elementos de DNA Transponíveis , Lepidópteros/genética , Mariposas/genética , Árvores/genética
2.
J Agric Food Chem ; 64(4): 746-51, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26711170

RESUMO

Combretastatin A-4, first isolated from the African willow tree Combretum caffrum, is a tubulin polymerization inhibitor in medicine. It was first postulated as a potential fungicide targeting fungal tubulin for plant disease control in this study. Combretastatin A-4 and its derivatives were synthesized and tested against Rhizoctonia solani and Pyricularia oryzae. Several compounds have EC50 values similar to or better than that of isoprothiolane, which is widely used for rice disease control. Structure-activity relationship study indicated the the cis configuration and hydroxyl group in combretastatin A-4 are crucial to the antifungal effect. Molecular modeling indicated the binding sites of combretastatin A-4 and carbendazim on fungal tubulin are totally different. The bioactivity of combretastatin A-4 and its derivatives against carbendazim-resistant strains was demonstrated in this study. The results provide a new approach for fungicide discovery and fungicide resistance management.


Assuntos
Combretum/química , Fungicidas Industriais/farmacologia , Extratos Vegetais/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/metabolismo , Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/química , Estrutura Molecular , Doenças das Plantas/microbiologia , Extratos Vegetais/química , Rhizoctonia/efeitos dos fármacos , Rhizoctonia/metabolismo , Relação Estrutura-Atividade , Moduladores de Tubulina/química
3.
Insect Biochem Mol Biol ; 41(10): 804-14, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21699978

RESUMO

Manduca sexta allatotropin (Manse-AT) is a multifunctional neuropeptide whose actions include the stimulation of juvenile hormone biosynthesis, myotropic stimulation, cardioacceleratory functions, and inhibition of active ion transport. Manse-AT is a member of a structurally related peptide family that is widely found in insects and also in other invertebrates. Its precise role depends on the insect species and developmental stage. In some lepidopteran insects including M. sexta, structurally-related AT-like (ATL) peptides can be derived from alternatively spliced mRNAs transcribed from the AT gene. We have isolated a cDNA for an AT receptor (ATR) from M. sexta by a PCR-based approach using the sequence of the ATR from Bombyx mori. The sequence of the M. sexta ATR is similar to several G protein-coupled receptors from other insect species and to the mammalian orexin receptor. We demonstrate that the M. sexta ATR expressed in vertebrate cell lines is activated in a dose-responsive manner by Manse-AT and each Manse-ATL peptide in the rank order ATL-I > ATL-II > ATL-III > AT, and functional analysis in multiple cell lines suggest that the receptor is coupled through elevated levels of Ca(2+) and cAMP. In feeding larvae, Manse-ATR mRNA is present at highest levels in the Malpighian tubules, followed by the midgut, hindgut, testes, and corpora allata, consistent with its action on multiple target tissues. In the adult corpora cardiaca--corpora allata complex, Manse-ATR mRNA is present at relatively low levels in both sexes.


Assuntos
Hormônios de Inseto/metabolismo , Proteínas de Insetos/metabolismo , Manduca/metabolismo , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Cálcio/metabolismo , Sinalização do Cálcio , Cricetinae , Cricetulus , AMP Cíclico/metabolismo , DNA Complementar/isolamento & purificação , Feminino , Proteínas de Insetos/isolamento & purificação , Masculino , Manduca/química , Dados de Sequência Molecular , Receptores de Neuropeptídeos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA