Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hepatology ; 57(6): 2502-13, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23386589

RESUMO

UNLABELLED: The molecular mechanisms regulating differentiation of fetal hepatic stem/progenitor cells, called hepatoblasts, which play pivotal roles in liver development, remain obscure. Wnt signaling pathways regulate the development and differentiation of stem cells in various organs. Although a ß-catenin-independent noncanonical Wnt pathway is essential for cell adhesion and polarity, the physiological functions of noncanonical Wnt pathways in liver development are unknown. Here we describe a functional role for Wnt5a, a noncanonical Wnt ligand, in the differentiation of mouse hepatoblasts. Wnt5a was expressed in mesenchymal cells and other cells of wild-type (WT) midgestational fetal liver. We analyzed fetal liver phenotypes in Wnt5a-deficient mice using a combination of histological and molecular techniques. Expression levels of Sox9 and the number of hepatocyte nuclear factor (HNF)1ß(+) HNF4α(-) biliary precursor cells were significantly higher in Wnt5a-deficient liver relative to WT liver. In Wnt5a-deficient fetal liver, in vivo formation of primitive bile ductal structures was significantly enhanced relative to WT littermates. We also investigated the function of Wnt5a protein and downstream signaling molecules using a three-dimensional culture system that included primary hepatoblasts or a hepatic progenitor cell line. In vitro differentiation assays showed that Wnt5a retarded the formation of bile duct-like structures in hepatoblasts, leading instead to hepatic maturation of such cells. Whereas Wnt5a signaling increased steady-state levels of phosphorylated calcium/calmodulin-dependent protein kinase II (CaMKII) in fetal liver, inhibition of CaMKII activity resulted in the formation of significantly more and larger-sized bile duct-like structures in vitro compared with those in vehicle-supplemented controls. CONCLUSION: Wnt5a-mediated signaling in fetal hepatic stem/progenitor cells suppresses biliary differentiation. These findings also suggest that activation of CaMKII by Wnt5a signaling suppresses biliary differentiation. (HEPATOLOGY 2013;).


Assuntos
Ductos Biliares Intra-Hepáticos/embriologia , Diferenciação Celular , Células-Tronco Fetais/fisiologia , Proteínas Wnt/metabolismo , Animais , Ductos Biliares Intra-Hepáticos/citologia , Ductos Biliares Intra-Hepáticos/metabolismo , Biomarcadores/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Receptores Frizzled/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Wnt-5a
2.
Antimicrob Agents Chemother ; 55(6): 2537-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21444704

RESUMO

A lack of patient response to alpha interferon (α-IFN) plus ribavirin (RBV) treatment is a major problem in eliminating hepatitis C virus (HCV). We screened chemical libraries for compounds that enhanced cellular responses to α-IFN and identified a triterpenoid, toosendanin (TSN). Here, we studied the effects and mechanisms of action of TSN on HCV replication and its effect on α-IFN signaling. We treated HCV genotype 1b replicon-expressing cells and HCV-J6/JFH-infected cells with TSN, with or without α-IFN, and the level of HCV replication was quantified. To study the effects of TSN on α-IFN signaling, we detected components of the interferon-stimulated gene factor 3 (ISGF3), phosphorylated signal transducer and activator of transcription 1 (STAT1), and STAT2 by Western blotting analysis; expression levels of mRNA of interferon regulatory factor 9 using real-time reverse transcription-PCR (RT-PCR); and interferon-stimulated response element reporter activity and measured the expression levels of interferon-inducible genes for 2',5'-oligoadenylate synthetase, MxA, protein kinase R, and p56 using real-time RT-PCR. TSN alone specifically inhibited expression of the HCV replicon (50% effective concentration = 20.6 nM, 50% cytotoxic concentration > 3 µM, selectivity index > 146). Pretreatment with TSN prior to α-IFN treatment was more effective in suppressing HCV replication than treatment with either drug alone. Although TSN alone did not activate the α-IFN pathway, it significantly enhanced the α-IFN-induced increase of phosphorylated STATs, interferon-stimulated response element activation, and interferon-stimulated gene expression. TSN significantly increased baseline expression of interferon regulatory factor 9, a component of interferon-stimulated gene factor 3. Antiviral effects of treatment with α-IFN can be enhanced by pretreatment with TSN. Its mechanisms of action could potentially be important to identify novel molecular targets to treat HCV infection.


Assuntos
Antivirais/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Hepacivirus/efeitos dos fármacos , Interferon-alfa/farmacologia , Linhagem Celular Tumoral , Quimioterapia Combinada , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Humanos , RNA Viral/biossíntese , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA