Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(6)2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30889910

RESUMO

This study aims to reveal the potential relationship between 5-HT and oxidative stress in the organism. Our in vitro experiments in RIN-14B cells showed that anoxia leads the cells to the state of oxidative stress. Administration of exogenous 5-HT exacerbated this effect, whereas the inhibition of Tph1, LP533401 alleviated the oxidative stress. Several research articles reported that Cinnabar (consists of more than 96% mercury sulfide, HgS), which is widely used in both Chinese and Indian traditional medicine prescriptions, has been involved in the regulation of 5-HT. The present research revealed that HgS relieved the level of oxidative stress of RIN-14B cells. This pharmacological activity was also observed in the prescription drug Zuotai, in which HgS accounts for 54.5%, and these effects were found to be similar to LP533401, an experimental drug to treat pulmonary hypertension. Further, our in vivo experiments revealed that the administration of cinnabar or prescription drug Zuotai in zebrafish reduced the reactive oxygen species (ROS) induced by hypoxia and cured behavioral abnormalities. Taken together, in organisms with hypoxia induced oxidative stress 5-HT levels were found to be abnormally elevated, indicating that 5-HT could regulate oxidative stress, and the decrease in the 5-HT levels, behavioral abnormalities after treatment with cinnabar and Zuotai, we may conclude that the therapeutic and pharmacologic effect of cinnabar and Zuotai may be based on the regulation of 5-HT metabolism and relief of oxidative stress. Even though they aren't toxic at the present dosage in both cell lines and zebrafish, their dose dependent toxicities are yet to be evaluated.


Assuntos
Compostos de Mercúrio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Serotonina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Larva/efeitos dos fármacos , Larva/metabolismo , Compostos de Mercúrio/farmacologia , Redes e Vias Metabólicas/efeitos dos fármacos , Modelos Biológicos , Oxirredução/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
2.
Chin J Nat Med ; 16(10): 766-773, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30322610

RESUMO

Several chemical compounds can restore pigmentation in vitiligo through mechanisms that vary according to disease etiology. In the present study, we investigated the melanogenic activity of six structurally distinct compounds, namely, scopoletin, kaempferol, chrysin, vitamin D3, piperine, and 6-benzylaminopurine. We determined their effectiveness, toxicity, and mechanism of action for stimulating pigmentation in B16F10 melanoma cells and in a zebrafish model. The melanogenic activity of 6-benzylaminopurine, the compound identified as the most potent, was further verified by measuring green fluorescent protein concentration in tyrp1 a: eGFP (tyrosinase-related protein 1) zebrafish and mitfa: eGFP (microphthalmia associated transcription factor) zebrafish and antioxidative activity. All the tested compounds were found to enhance melanogenesis responses both in vivo and in vitro at their respective optimal concentration by increasing melanin content and expression of TYR and MITF. 6-Benzyamino-purine showed the strongest re-pigmentation action at a concentration of 20 µmol·L-1in vivo and 100 µmol·L-1in vitro, and up-regulated the strong fluorescence expression of green fluorescent protein in tyrp1a: eGFP and mitfa: eGFP zebrafish in vitro. However, its relative anti-oxidative activity was found to be very low. Overall, our results indicated that 6-benzylaminopurine stimulated pigmentation through a direct mechanism, by increasing melanin content via positive regulation of tyrosinase activity in vitro, as well as up-regulating the expression of the green fluorescent protein in transgenic zebrafish in vivo.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Compostos de Benzil/farmacologia , Colecalciferol/farmacologia , Flavonoides/farmacologia , Quempferóis/farmacologia , Melaninas/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Purinas/farmacologia , Escopoletina/farmacologia , Vitiligo/metabolismo , Alcaloides/química , Animais , Benzodioxóis/química , Compostos de Benzil/química , Colecalciferol/química , Flavonoides/química , Humanos , Quempferóis/química , Melaninas/genética , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Pigmentação/efeitos dos fármacos , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Purinas/química , Escopoletina/química , Vitiligo/tratamento farmacológico , Vitiligo/enzimologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA