Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 301: 113792, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34607137

RESUMO

Jaggery is a kind of unrefined non-centrifugal sugar (NCS) used mainly in Asia, Africa, Latin America, and the Caribbean. Traditionally, jaggery is produced by concentrating sugarcane juice in open pans with the help of bagasse combustion. However, due to thermal energy loss with flue gases and an unscientific approach in plant construction, jaggery plants have a poor thermal efficiency of less than 25%, poor emission characteristics, and a high bagasse consumption rate. Advanced jaggery-making techniques use solar energy and heat pumps for jaggery production. However, these techniques are in the early stage of development, and the literature indicates that these techniques should be used in conjuction with traditional ones to improve the performance of jaggery making plants. This literature review describes advances in jaggery-making methods, critically analyzed them, and provides a qualitative comparison of these methods. Further, gaps in the existing literature are identified and reported for future research direction. In addition, efforts have been made to quantify and estimate the emissions reduction and bagasse consumption potentials from the traditional jaggery industry to make this rural industry a sustainable and profitable business for rural entrepreneurs. The comparison with the recently developed clean combustion device exhibits that the harmful emissions from the jaggery industry could be reduced drastically viz. 95%-98% of PM2.5; 92%-95% of CO, and 52-60% of CO2, while saving more than 35% of bagasse consumption. Implemented at a national scale, it may reduce nearly 3% of all harmful emissions in the country, which is equally applicable elsewhere.


Assuntos
Extratos Vegetais , Saccharum , Gases , Temperatura Alta
2.
Neuroscience ; 162(2): 349-58, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19426784

RESUMO

Diabetic encephalopathy is characterized by impaired cognitive functions that appear to underlie neuronal damage triggered by glucose driven oxidative stress. Hyperglycemia-induced oxidative stress in diabetic brain may initiate structural and functional changes in synaptosomal membranes. The objective of the present study was to examine the neuroprotective role of N-acetylcysteine (NAC) in hyperglycemia-induced alterations in lipid composition and activity of membrane bound enzymes (Na(+),K(+)-ATPase and Ca(2+)-ATPase) in the rodent model of type 1 diabetes. Male Wistar rats weighing between 180 and 200 g were rendered diabetic by a single injection of streptozotocin (50 mg/kg body weight, i.p.). The diabetic animals were administered NAC (1.4-1.5 g/kg body weight) for eight weeks and lipid composition along with membrane fluidity were determined. A significant increase in lipid peroxidation was observed in cerebral cortex of diabetic rats. NAC administration on the other hand lowered the hyperglycemia-induced lipid peroxidation to near control levels. The increased lipid peroxidation following chronic hyperglycemia was accompanied by a significant increase in the total lipids which can be attributed to increase in the levels of cholesterol, triglycerides and glycolipids. On the contrary phospholipid and ganglioside levels were decreased. Hyperglycemia-induced increase in cholesterol to phospholipid ratio reflected decrease in membrane fluidity. Fluorescence polarization (p) with DPH also confirmed decrease in synaptosomal membrane fluidity that influenced the activity of membrane bound enzymes. An inverse correlation was found between fluorescence polarization with the activities of Na(+),K(+)-ATPase (r(2)=0.416, P<0.05) and Ca(2+) ATPase (r(2)=0.604, P<0.05). NAC was found to significantly improve lipid composition, restore membrane fluidity and activity of membrane bound enzymes. Our results clearly suggest perturbations in lipid composition and membrane fluidity as a major factor in the development of diabetic encephalopathy. Furthermore, NAC administration ameliorated the effect of hyperglycemia on oxidative stress and alterations in lipid composition thereby restoring membrane fluidity and activity of membrane bound enzymes.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Hiperglicemia/metabolismo , Membranas Intracelulares/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sinaptossomos/efeitos dos fármacos , Animais , Glicemia/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Córtex Cerebral/química , Diabetes Mellitus Experimental/metabolismo , Membranas Intracelulares/enzimologia , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/análise , Masculino , Ligação Proteica , Ratos , Ratos Wistar , ATPase Trocadora de Sódio-Potássio/metabolismo , Sinaptossomos/enzimologia
3.
Health Phys ; 77(5 Suppl): S86-95, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10527156

RESUMO

A process to implement the U.S. Department of Energy's (DOE) policy for authorized release of radioactive materials from DOE facilities is provided in the Draft Handbook for Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material, published by DOE in 1997 and distributed to DOE field offices for interim use and implementation. The authorized release of such property is intended to permit its beneficial use across the entire DOE complex. A computerized management tool--P2Pro(RSM)--has been developed to aid in carrying out the release process for radioactive metals. It contains protocols for the authorized release process and relevant information to facilitate the evaluation of scrap metals for reuse and recycle. The P2Pro(RSM) protocols provide DOE and its contractors with an effective, user-friendly tool for managing authorized release activities P2Pro(RSM) is designed to be used in the Windows environment. The protocols incorporate a relational database coupled with a graphic-user interface to guide the user through the appropriate steps so authorized release limits can be developed. With the information provided in the database, an as-low-as-reasonably-achievable (ALARA) optimization process can be easily set up and run for up to 10 alternatives for disposition of radioactive scrap metals. The results of the ALARA optimization process can be printed in a series of reports and submitted as part of the application for the authorized release of the radioactive scrap metals.


Assuntos
Órgãos Governamentais , Laboratórios/normas , Metais , Proteção Radiológica/legislação & jurisprudência , Resíduos Radioativos , Documentação , Laboratórios/legislação & jurisprudência , Proteção Radiológica/normas , Resíduos Radioativos/legislação & jurisprudência , Aço/química , Estados Unidos , Urânio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA