Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nutrients ; 15(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447152

RESUMO

Arachidonic acid (ARA), docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), which are long-chain polyunsaturated fatty acids (LCPUFAs), as well as lutein (L) and zeaxanthin (Z), can potentially improve brain function. However, the effect of a combination of these components (LCPUFAs + LZ) on memory function in healthy older individuals remains unclear. This study aimed to determine if LCPUFAs + LZ-supplemented food could improve memory function. Exploratory and confirmatory trials (Trials 1 and 2, respectively) were conducted in healthy older Japanese individuals with memory complaints. We conducted randomized, double-blind, placebo-controlled, parallel-group trials. Participants were randomly allocated to two groups: placebo or LCPUFAs + LZ. LCPUFAs + LZ participants were provided with supplements containing ARA, DHA, EPA, L, and Z for 24 weeks in Trial 1 and 12 weeks in Trial 2. Memory functions were evaluated using Cognitrax before and after each trial. Combined analyses were performed for subgroups of participants with cognitive decline in Trials 1 and 2. The results showed that supplementation with LCPUFAs + LZ did not significantly affect memory function in healthy, non-demented, older individuals with memory complaints whereas it improved memory function in healthy, non-demented, older individuals with cognitive decline.


Assuntos
Ácidos Graxos Ômega-3 , Memória Episódica , Humanos , Idoso , Luteína/farmacologia , Zeaxantinas/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Suplementos Nutricionais , Ácidos Graxos , Ácido Araquidônico/farmacologia , Método Duplo-Cego
2.
Sci Rep ; 10(1): 12906, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737350

RESUMO

Multifactorial lifestyle intervention is known to be more effective for ameliorating cognitive decline than single factor intervention; however, the effects of combining exercise with long-chain polyunsaturated fatty acids (LCPUFA) on the elderlies' cognitive function remain unclear. We conducted a randomised, single-masked placebo-controlled trial in non-demented elderly Japanese individuals. Participants were randomly allocated to the exercise with LCPUFA, placebo, or no exercise with placebo (control) groups. Participants in the exercise groups performed 150 min of exercise per week, comprised resistance and aerobic training, for 24 weeks with supplements of either LCPUFA (docosahexaenoic acid, 300 mg/day; eicosapentaenoic acid, 100 mg/day; arachidonic acid, 120 mg/day) or placebo. Cognitive functions were evaluated by neuropsychological tests prior to and following the intervention. The per-protocol set analysis (n = 76) revealed no significant differences between the exercise and the control groups in changes of neuropsychological tests. Subgroup analysis for participants with low skeletal muscle mass index (SMI) corresponding to sarcopenia cut-off value showed changes in selective attention, while working memory in the exercise with LCPUFA group was better than in the control group. These findings suggest that exercise with LCPUFA supplementation potentially improves attention and working memory in the elderly with low SMI.


Assuntos
Envelhecimento , Cognição , Suplementos Nutricionais , Exercício Físico , Ácidos Graxos Insaturados/administração & dosagem , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Artigo em Inglês | MEDLINE | ID: mdl-32145668

RESUMO

Polyunsaturated fatty acids (PUFAs), especially arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), play an important role in biological regulation. In our previous study using mice deficient in Δ6 desaturase (D6D), we reported that ARA is required for body growth, while DHA is necessary for functional development. In mammals, ARA and DHA are supplied directly or by synthesis from linoleic acid (LA) and α-linolenic acid (ALA). However, as desaturase enzyme activity is immature or low in newborns, and humans with minor alleles of the gene encoding desaturase, respectively, they require dietary supplementation with ARA and DHA. To investigate how the body reacts to a long-term reduction in fatty acid synthesis, we measured behavioral changes and fatty acid composition in mice heterozygous for the D6D null mutation with reduced D6D activity fed a diet containing only LA and ALA as PUFAs. During the growth-maturity period, heterozygous mice showed a slightly change in interest and curiosity compared with the wild-type group. ARA levels were decreased in the brain and liver in the heterozygous group, especially during the growth-maturity period, whereas DHA levels were decreased in the liver only in the old age period, suggesting that there are differences in the synthesis of and demand for ARA and DHA during life. For newborns, and humans with minor alleles with low desaturase activity, direct ARA intake is particularly important during the growth-maturity period, but they may need to be supplemented with DHA in the old age period. Further research is needed to determine the optimal intake and duration of these fatty acids.


Assuntos
Ácido Araquidônico/metabolismo , Comportamento Animal , Encéfalo/metabolismo , Dieta/métodos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Dessaturases/deficiência , Fígado/metabolismo , Animais , Animais Recém-Nascidos , Ansiedade , Suplementos Nutricionais , Ácidos Graxos Dessaturases/genética , Ácido Linoleico/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Ácido alfa-Linolênico/administração & dosagem
4.
Lipids Health Dis ; 14: 3, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25595700

RESUMO

BACKGROUND: Arachidonic acid (ARA) is an essential fatty acid and a major constituent of biomembranes. It is converted into various lipid mediators, such as prostaglandin E2 (PGE2), which is involved in the development of rheumatoid arthritis (RA). However, the effects of dietary ARA on RA are unclear. Our objective was to clarify the effects of dietary ARA on an experimental rat arthritis model. METHODS: Lew rats were fed three contents of ARA diet (0.07%, 0.15% or 0.32% ARA in diet (w/w)), a docosahexaenoic acid (DHA) diet (0.32% DHA), or a control diet. After 4 weeks, arthritis was induced by injection of Freund's complete adjuvant into the hind footpad. We observed the development of arthritis for another 4 weeks, and evaluated arthritis severity, fatty acid and lipid mediator contents in the paw, and expression of genes related to lipid mediator formation and inflammatory cytokines. Treatment with indomethacin was also evaluated. RESULTS: The ARA content of phospholipids in the paw was significantly elevated with dietary ARA in a dose-dependent manner. Dietary ARA as well as DHA did not affect arthritis severity (paw edema, arthritis score, and bone erosion). PGE2 content in the paw was increased by arthritis induction, but was not modified by dietary ARA. Dietary ARA did not affect the contents of other lipid mediators and gene expression of cyclooxygenase (COX)-1, COX-2, lipoxgenases and inflammatory cytokines. Indomethacin suppressed arthritis severity and PGE2 content in the paw. CONCLUSION: These results suggest that dietary ARA increases ARA content in the paw, but has no effect on arthritis severity and PGE2 content of the paw in a rat arthritis model.


Assuntos
Ácido Araquidônico/metabolismo , Ácido Araquidônico/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Suplementos Nutricionais , Dinoprostona/metabolismo , Animais , Ácido Araquidônico/sangue , Ácido Araquidônico/farmacologia , Artrite Experimental/sangue , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Leucotrieno B4/metabolismo , Lipoxinas/metabolismo , Masculino , Ratos Endogâmicos Lew , Fatores de Tempo
5.
Biomaterials ; 25(18): 4309-15, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15046921

RESUMO

We reported that the co-polymer composed of vinylpyrrolidone and maleic acid selectively distributed into the kidneys after i.v. injection. To further optimize the renal drug delivery system, we assessed the renal targeting capability of anionized polyvinylpyrrolidone (PVP) derivatives after intravenous administration in mice. The elimination of anionized PVP derivatives from the blood decreased with increasing anionic groups, and the clearance of carboxylated PVP and sulfonated PVP from the blood was almost similar. But carboxylated PVP efficiently accumulated in the kidney, whereas sulfonated PVP was rapidly excreted in the urine. The renal levels of carboxylated PVP were about five-fold higher than sulfonated PVP. Additionally, carboxylated PVP was effectively taken up by the renal proximal tubular epithelial cells in vivo after i.v. injection. These anionized PVP derivatives did not show any cytotoxicity against renal tubular cells and endothelial cells in vitro. Thus, these carboxylated and sulfonated PVPs may be useful polymeric carriers for drug delivery to the kidney and bladder, respectively.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Células Endoteliais/efeitos dos fármacos , Túbulos Renais/efeitos dos fármacos , Rim/metabolismo , Povidona/administração & dosagem , Povidona/farmacocinética , Sarcoma/patologia , Animais , Ânions , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Avaliação Pré-Clínica de Medicamentos/métodos , Células Endoteliais/patologia , Humanos , Injeções Intravenosas , Túbulos Renais/patologia , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos A , Especificidade de Órgãos , Povidona/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA