RESUMO
This study was conducted to evaluate the protective effect of Juglans regia (walnut, Gimcheon 1ho cultivar, GC) on high-fat diet (HFD)-induced cognitive dysfunction in C57BL/6 mice. The main physiological compounds of GC were identified as pedunculagin/casuariin isomer, strictinin, tellimagrandin I, ellagic acid-O-pentoside, and ellagic acid were identified using UPLC Q-TOF/MS analysis. To evaluate the neuro-protective effect of GC, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 2',7'-dichlorodihydrofluorecein diacetate (DCF-DA) analysis were conducted in H2O2 and high glucose-induced neuronal PC12 cells and hippocampal HT22 cells. GC presented significant cell viability and inhibition of reactive oxygen species (ROS) production. GC ameliorated behavioral and memory dysfunction through Y-maze, passive avoidance, and Morris water maze tests. In addition, GC reduced white adipose tissue (WAT), liver fat mass, and serum dyslipidemia. To assess the inhibitory effect of antioxidant system deficit, lipid peroxidation, ferric reducing antioxidant power (FRAP), and advanced glycation end products (AGEs) were conducted. Administration of GC protected the antioxidant damage against HFD-induced diabetic oxidative stress. To estimate the ameliorating effect of GC, acetylcholine (ACh) level, acetylcholinesterase (AChE) activity, and expression of AChE and choline acetyltransferase (ChAT) were conducted, and the supplements of GC suppressed the cholinergic system impairment. Furthermore, GC restored mitochondrial dysfunction by regulating the mitochondrial ROS production and mitochondrial membrane potential (MMP) levels in cerebral tissues. Finally, GC ameliorated cerebral damage by synergically regulating the protein expression of the JNK signaling and apoptosis pathway. These findings suggest that GC could provide a potential functional food source to improve diabetic cognitive deficits and neuronal impairments.
Assuntos
Disfunção Cognitiva , Juglans , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Dieta Hiperlipídica , Ácido Elágico/farmacologia , Peróxido de Hidrogênio/farmacologia , Juglans/metabolismo , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismoRESUMO
In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aß1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aß-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aß and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1ß. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aß1-42-induced cognitive impairment in mice.
Assuntos
Disfunção Cognitiva , Fármacos Neuroprotetores , Pinus , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Acetilcolinesterase/metabolismo , Trifosfato de Adenosina/metabolismo , Peptídeos beta-Amiloides , Animais , Antioxidantes/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colina O-Acetiltransferase/metabolismo , Colina O-Acetiltransferase/farmacologia , Colinérgicos/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Glutationa/metabolismo , Malondialdeído/metabolismo , Malondialdeído/farmacologia , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , Doenças Neuroinflamatórias , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Casca de Planta , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , República da Coreia , Superóxido Dismutase/metabolismo , Sinaptofisina/metabolismo , Sinaptofisina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
This study was performed to investigate the effects of persimmon (Diospyros kaki) on high-fat diet (HFD)-induced hepatic lipotoxicity. The compounds of persimmon water extract (PWE) were identified as gallic acid, glucogallin, 1-O-Galloyl-(2-O-acetyl)-glu, and trihydroxy-octadecadienoic acid. The PWE was ingested by C57BL/6 mice with an HFD for 8 weeks. The PWE improved glucose tolerance and suppressed weight gain by inhibiting increases in the weight of liver and adipose tissues. The results of serum biomarker analysis showed that PWE suppressed biomarkers such as liver injury and dyslipidemia. In ex vivo tests, reduction of oxidative stress and improvement of mitochondrial dysfunction were confirmed in the liver of PWE groups. In a molecular study, it was confirmed that PWE decreased lipid accumulation, insulin resistance, inflammation, and apoptosis in the liver. Finally, in a metabolite analysis of liver tissue using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS), it was confirmed that PWE has an effect on lipid metabolism. In particular, PWE reduced phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs). Notably, it is presumed that the reduction of lysoPCs and PCs in the PWE group is related to the improvement of liver dysfunction due to lipotoxicity.
Assuntos
Diospyros , Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Diospyros/química , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Extratos Vegetais/química , Água/metabolismoRESUMO
The anti-amnesic effect of a mixture (4:6 = phlorotannin:fucoidan from Ecklonia cava, P4F6) was evaluated on amyloid-beta peptide (Aß)-induced cognitive deficit mice. The cognitive function was examined by Y-maze, passive avoidance, and Morris water maze tests, and the intake of the mixture (P4F6) showed an ameliorating effect on Aß-induced learning and memory impairment. After the behavioral tests, superoxide dismutase (SOD) activity and thiobarbituric acid-reactive substances (TBARS) contents were confirmed in brain tissue, and in the results, the mixture (P4F6) attenuated Aß-induced oxidative stress. In addition, mitochondrial activity was evaluated by mitochondrial reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, and mitochondria-mediated apoptotic signaling pathway, and the mixture (P4F6) enhanced mitochondrial function. Furthermore, the mixture (P4F6) effectively regulated tau hyperphosphorylation by regulating the protein kinase B (Akt) pathway, and promoted brain-derived neurotrophic factor (BDNF) in brain tissue. Moreover, in the cholinergic system, the mixture (P4F6) ameliorated acetylcholine (ACh) content by regulating acetylcholinesterase (AChE) activity and choline acetyltransferase (ChAT) expression in brain tissue. Based on these results, we suggest that this mixture of phlorotannin and fucoidan (P4F6) might be a substance for improving cognitive function by effectively regulating cognition-related molecules.
Assuntos
Disfunção Cognitiva/tratamento farmacológico , Kelp , Fármacos Neuroprotetores/administração & dosagem , Polissacarídeos/administração & dosagem , Taninos/administração & dosagem , Acetilcolina/metabolismo , Animais , Organismos Aquáticos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Colinérgicos/metabolismo , Modelos Animais de Doenças , Quimioterapia Combinada , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/farmacologia , Fitoterapia , Polissacarídeos/farmacologia , Taninos/farmacologiaRESUMO
This study confirmed the ameliorating effect of immature persimmon (Diospyros kaki) ethanolic extract (IPEE) on neuronal cytotoxicity in amyloid beta (Aß)1-42-induced ICR mice. The administration of IPEE ameliorated the cognitive dysfunction in Aß1-42-induced mice by improving the spatial working memory, the short-term and long-term memory functions. IPEE protected the cerebral cholinergic system, such as the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity, and antioxidant system, such as the superoxide dismutase (SOD), reduced glutathione (GSH) and malondialdehyde (MDA) contents. In addition, mitochondrial dysfunction against Aß1-42-induced toxicity was reduced by regulating the reactive oxygen species (ROS), mitochondrial membrane potential and ATP contents. In addition, IPEE regulated the expression levels of tau signaling, such as TNF-α, p-JNK, p-Akt, p-GSK3ß, p-tau, p-NF-κB, BAX and caspase 3. Finally, gallic acid, ellagic acid and quercetin 3-O-(6â³-acetyl-glucoside) were identified as the physiological compounds of IPEE using ultra-performance liquid chromatography ion mobility separation quadrupole time-of-flight/tandem mass spectrometry (UPLC IMS Q-TOF/MS2).
Assuntos
Disfunção Cognitiva/prevenção & controle , Diospyros/química , Frutas/química , Extratos Vegetais/farmacologia , Tauopatias/prevenção & controle , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides , Animais , Antioxidantes/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Etanol/química , Aprendizagem em Labirinto/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Memória de Curto Prazo/efeitos dos fármacos , Camundongos Endogâmicos ICR , Fragmentos de Peptídeos , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismo , Tauopatias/induzido quimicamente , Tauopatias/metabolismo , Proteínas tau/metabolismoRESUMO
Here, we investigated the prebiotic and antioxidant effects of Actinidia arguta sprout water extract (AASWE) on lipopolysaccharide (LPS)-induced cognitive deficit mice. AASWE increased viable cell count, titratable acidity, and acetic acid production in Lactobacillus reuteri strain and showed a cytoprotective effect on LPS-induced inflammation in HT-29 cells. We assessed the behavior of LPSinduced cognitive deficit mice using Y-maze, passive avoidance and Morris water maze tests and found that administration of AASWE significantly improved learning and memory function. The AASWE group showed antioxidant activity through downregulation of malondialdehyde levels and upregulation of superoxide dismutase levels in brain tissue. In addition, the AASWE group exhibited activation of the cholinergic system with decreased acetylcholinesterase activity in brain tissue. Furthermore, AASWE effectively downregulated inflammatory mediators such as phosphorylated- JNK, phosphorylated-NF-κB, TNF-α and interleukin-6. The major bioactive compounds of AASWE were identified as quercetin-3-O-arabinopyranosyl(1â2)-rhamnopyranosyl(1â6)-glucopyranose, quercetin-3-O-apiosyl(1â2)-galactoside, rutin, and 3-caffeoylquinic acid. Based on these results, we suggest that AASWE not only increases the growth of beneficial bacteria in the intestines, but also shows an ameliorating effect on LPS-induced cognitive impairment.
Assuntos
Actinidia/química , Antioxidantes/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Lipopolissacarídeos/efeitos adversos , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Acetilcolinesterase/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Encéfalo/metabolismo , Disfunção Cognitiva/induzido quimicamente , Células HT29 , Humanos , Inflamação/tratamento farmacológico , Interleucina-6 , Limosilactobacillus reuteri , Masculino , Camundongos , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Superóxido DismutaseRESUMO
This study was conducted to assess the protective effect of extract of match (EM) on high-fat diet- (HFD-) induced cognitive deficits in male C57BL/6 mice. It was found that EM improved glucose tolerance status by measuring OGTT and IPGTT with HFD-induced mice. EM protected behavioral and memory dysfunction in Y-maze, passive avoidance, and Morris water maze tests. Consumption of EM reduced fat mass, dyslipidemia, and inflammation in adipose tissue. Also, EM ameliorated hepatic and cerebral antioxidant systems. EM improved the cerebral cholinergic system by regulating ACh contents and expression of AChE and ChAT. Also, EM restored mitochondrial function in liver and brain tissue. EM attenuated hepatic inflammatory effect, lipid synthesis, and cholesterol metabolism by regulating the protein expression of TNF-α, TNFR1, p-IRS-1, p-JNK, IL-1ß, iNOS, COX-2, HMGCR, PPARγ, and FAS. Finally, EM regulated cognitive function and neuroinflammation in the whole brain, hippocampus, and cerebral cortex by regulating the protein expression of p-JNK, p-Akt, p-tau, Aß, BDNF, IDE, COX-2, and IL-1ß. These findings suggest that EM might be a potential source of functional food to improve metabolic disorder-associated cognitive dysfunction.
Assuntos
Disfunção Cognitiva , Dieta Hiperlipídica/efeitos adversos , Dislipidemias , Transtornos da Memória , Paniculite , Chá , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Dislipidemias/induzido quimicamente , Dislipidemias/metabolismo , Dislipidemias/patologia , Dislipidemias/terapia , Regulação da Expressão Gênica , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Transtornos da Memória/terapia , Camundongos , Paniculite/induzido quimicamente , Paniculite/metabolismo , Paniculite/patologia , Paniculite/terapiaRESUMO
To evaluate possibility as a skin whitening agent of Sorghum bicolor (S. bicolor), its antioxidant activity and anti-melanogenic effect on 3-isobutyl-1-methylxanthine (IBMX)-induced melanogenesis in B16/F10 melanoma cells were investigated. The result of total phenolic contents (TPC) indicated that 60% ethanol extract of S. bicolor (ESB) has the highest contents than other ethanol extracts. Antioxidant activity was evaluated using the 2,2'-azino-bis-(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt (ABTS)/1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activities and malondialdehyde (MDA) inhibitory effect. These results showed ESB has significant antioxidant activities. Inhibitory effect against tyrosinase was also assessed using L-tyrosine (IC50 value = 89.25 µg/mL) and 3,4-dihydroxy-L-phenylalanine (L-DOPA) as substrates. In addition, ESB treatment effectively inhibited melanin production in IBMX-induced B16/F10 melanoma cells. To confirm the mechanism on anti-melanogenic effect of ESB, we examined melanogenesis-related proteins. ESB downregulated melanogenesis by decreasing expression of microphthalmia-associated transcription factor (MITF), tyrosinase and tyrosinase-related protein (TRP)-1. Finally, 9-hydroxyoctadecadienoic acid (9-HODE), 1,3-O-dicaffeoylglycerol and tricin as the main compounds of ESB were analyzed using the ultra-performance liquid chromatography-ion mobility separation-quadrupole time of flight/tandem mass spectrometry (UPLC-IMS-QTOF/MS2). These findings suggest that ESB may have physiological potential to be used skin whitening material.
Assuntos
1-Metil-3-Isobutilxantina/farmacologia , Melaninas/biossíntese , Extratos Vegetais/farmacologia , Sorghum/química , Animais , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Melanoma Experimental , Camundongos , Extratos Vegetais/química , Solventes , Espectrometria de Massas em TandemRESUMO
This study was performed to investigate the effect of the chloroform fraction from Actinidia arguta (CFAA) on cognitive dysfunction in a C57BL/6 mouse model fed a high-fat diet (HFD) for 12 weeks. The CFAA has the protective effect on high glucose-induced neurotoxicity in MC-IXC cell (neuroblastoma cell line). In a C57BL/6 mouse model fed a HFD for 12 weeks, the improved glucose tolerance and cognitive dysfunction were observed in a group ingesting CFAA. In the brain tissue analysis, the impaired cholinergic, antioxidant system and mitochondria functions were improved in the CFAA group. In addition, in a molecular biology study, it was observed that CFAA improves HFD-induced abnormal insulin signaling such as increase of IRS phosphorylation at serine residues and reduction of Akt phosphorylation caused by the increase of JNK phosphorylation and then inhibited apoptosis. In the UPLC Q-TOF/MS analysis, pentacyclic triterpenoids such as asiatic acid (AA), madecassic acid (MA) were identified in CFAA as main compounds. Therefore, these results propose that Actinidia arguta rich in pentacyclic triterpenoids may be effective as preventive matter a therapeutic strategy to improve neurodegenerative disease caused by HFD.
Assuntos
Actinidia , Encéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Obesidade/fisiopatologia , Extratos Vegetais/uso terapêutico , Triterpenos/uso terapêutico , Actinidia/química , Animais , Encéfalo/fisiopatologia , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/fisiopatologia , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/química , Obesidade/tratamento farmacológico , Obesidade/etiologia , Extratos Vegetais/química , Triterpenos/químicaRESUMO
This study was performed to investigate the effects of Artemisia argyi and 4,5-dicaffeyolquinic acid (4,5-diCQA) as a main compound of ethyl acetate fraction from Artemisia argyi (EFAA) on high-fat diet (HFD)-induced cognitive dysfunction. Both EFAA and 4,5-diCQA were effective in improving cognitive function on HFD-induced cognitive dysfunction. In brain tissue analysis, it was confirmed that EFAA and 4,5-diCQA inhibited the reduction of neurotransmitters as well as oxidative stress and mitochondrial dysfunction. In addition, they inhibited amyloid ß (Aß) accumulation by increasing the expression of insulin-degrading enzyme and consequently prevented apoptosis. In conclusion, it is presumed that Artemisia argyi may help to improve the cognitive impairment due to the HFD, and it is considered that this effect is closely related to the physiological activity of 4,5-diCQA. PRACTICAL APPLICATIONS: Artemisia argyi is used in traditional herbal medicine in Asia. Type 2 diabetes mellitus has been proven by a variety of epidemiological studies to be a risk factor for cognitive impairment, such as Alzheimer's disease. This study confirmed that 4,5-diCQA is a bioactive compound of Artemisia argyi on improving HFD-induced cognitive dysfunction. Therefore, this study can provide useful information to the effect of Artemisia argyi and related substance.
Assuntos
Artemisia , Disfunção Cognitiva/tratamento farmacológico , Insulisina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Ácido Quínico/análogos & derivados , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Apoptose/efeitos dos fármacos , Artemisia/química , Artemisia/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Insulisina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Plantas Medicinais/metabolismo , Ácido Quínico/farmacologiaRESUMO
This study was performed to estimate the possibility of using an ethyl acetate fraction from Aruncus dioicus var. kamtschaticus (EFAD) on metabolic syndrome that is induced by a high-fat diet (HFD). It was demonstrated that EFAD suppresses lipid accumulation and improves insulin resistance (IR) caused by Tumor necrosis factor alpha (TNF-α) in in-vitro experiments using the 3T3-L1 cell. In in-vivo tests, C57BL/6 mice were fed EFAD at 20 and 40 mg/kg body weight (BW) for four weeks after the mice were fed HFD for 15 weeks to induce obesity. EFAD significantly suppressed the elevation of BW and improved impaired glucose tolerance in obese mice. Additionally, this study showed that EFAD has an ameliorating effect on obesity-induced cognitive disorder with behavioral tests. The effect of EFAD on peripheral-IR improvement was confirmed by serum analysis and western blotting in peripheral tissues. Additionally, EFAD showed an ameliorating effect on HFD-induced oxidative stress, impaired cholinergic system and mitochondrial dysfunction, which are interrelated symptoms of neurodegeneration, such as Alzheimer's disease and central nervous system (CNS)-IR in brain tissue. Furthermore, we confirmed that EFAD improves CNS-IR by confirming the IR-related factors in brain tissue. Consequently, this study suggests the possibility of using EFAD for the prevention of neurodegeneration by improving metabolic syndrome that is caused by HFD.
Assuntos
Transtornos Cognitivos/tratamento farmacológico , Cognição/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Obesidade/psicologia , Extratos Vegetais/farmacologia , Células 3T3-L1 , Animais , Peso Corporal/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/etiologia , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologiaRESUMO
An ethyl acetate fraction from Aralia elata (AEEF) was investigated to confirm its neuronal cell protective effect on ethanol-induced cytotoxicity in MC-IXC cells and its ameliorating effect on neurodegeneration in chronic alcohol-induced mice. The neuroprotective effect was examined by methylthiazolyldiphenyl-tetrazolium bromide (MTT) and 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA) assays. As a result, AEEF reduced alcohol-induced cytotoxicity and oxidative stress. To evaluate the improvement of learning, memory ability, and spatial cognition, Y-maze, passive avoidance, and Morris water maze tests were conducted. The AEEF groups showed an alleviation of the decrease in cognitive function in alcohol-treated mice. Then, malondialdehyde (MDA) levels and the superoxide dismutase (SOD) content were measured to evaluate the antioxidant effect of AEEF in the brain tissue. Treatment with AEEF showed a considerable ameliorating effect on biomarkers such as SOD and MDA content in alcohol-induced mice. To assess the cerebral cholinergic system involved in neuronal signaling, acetylcholinesterase (AChE) activity and acetylcholine (ACh) content were measured. The AEEF groups showed increased ACh levels and decreased AChE activities. In addition, AEEF prevented alcohol-induced neuronal apoptosis via improvement of mitochondrial activity, including reactive oxygen species levels, mitochondrial membrane potential, and adenosine triphosphate content. AEEF inhibited apoptotic signals by regulating phosphorylated c-Jun N-terminal kinases (p-JNK), phosphorylated protein kinase B (p-Akt), Bcl-2-associated X protein (BAX), and phosphorylated Tau (p-Tau). Finally, the bioactive compounds of AEEF were identified as caffeoylquinic acid (CQA), 3,5-dicaffeoylquinic acid (3,5-diCQA), and chikusetsusaponin IVa using the UPLC-Q-TOF-MS system.
Assuntos
Transtornos do Sistema Nervoso Induzidos por Álcool/tratamento farmacológico , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Aralia/química , Encéfalo/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Acetatos/química , Transtornos do Sistema Nervoso Induzidos por Álcool/metabolismo , Transtornos do Sistema Nervoso Induzidos por Álcool/patologia , Animais , Antioxidantes/química , Encéfalo/patologia , Linhagem Celular , Doença Crônica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Neurônios/patologia , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Espécies Reativas de Oxigênio/metabolismoRESUMO
The aim of this study was to investigate the availability of seeds, one of the byproducts of green tea, and evaluate the physiological activity of seed oil. The ameliorating effect of green tea seed oil (GTO) was evaluated on H2O2-induced PC12 cells and amyloid beta (Aß)1-42-induced ICR mice. GTO showed improvement of cell viability and reduced reactive oxygen species (ROS) production in H2O2-induced PC12 cells by conducting the 2',3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2',7'-dichlorofluorescein diacetate (DCF-DA) analysis. Also, administration of GTO (50 and 100 mg/kg body weight) presented protective effects on behavioral and memory dysfunction by conducting Y-maze, passive avoidance, and Morris water maze tests in Aß-induced ICR mice. GTO protected the antioxidant system by reducing malondialdehyde (MDA) levels, and by increasing superoxide dismutase (SOD) and reducing glutathione (GSH) contents. It significantly regulated the cholinergic system of acetylcholine (ACh) contents, acetylcholinesterase (AChE) activities, and AChE expression. Also, mitochondrial function was improved through the reduced production of ROS and damage of mitochondrial membrane potential (MMP) by regulating the Aß-related c-Jun N-terminal kinase (JNK)/protein kinase B (Akt) and Akt/apoptosis pathways. This study suggested that GTO may have an ameliorating effect on cognitive dysfunction and neurotoxicity through various physiological activities.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Óleos de Plantas/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Chá , Animais , Antioxidantes/química , Antioxidantes/uso terapêutico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Óleos de Plantas/química , Ratos , Sementes/química , Chá/químicaRESUMO
This study aimed to investigate the ameliorating effect of an ethyl acetate fraction from the fruit Actinidia arguta (EFAA) on amyloid beta (Aß)-induced neurotoxicity and cognitive deficits in ICR mice. EFAA showed potent protective effects against Aß-induced neurotoxicity through 2',7'-dichlorofluorescein diacetate (DCF-DA), 2',3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release into the assay medium. EFAA treatment reduced the intracellular ROS level and lactate dehydrogenase (LDH) release in the mitochondria, and increased cell viability in Aß-induced neuroblastoma MC-IXC cells. The administration of EFAA significantly attenuated Aß-induced learning and memory deficits, which were evaluated by Y-maze, passive avoidance, and Morris water maze tests. Furthermore, EFAA showed the ameliorating effect of cholinergic functions by increasing acetylcholine (ACh) levels and decreasing acetylcholinesterase (AChE) activity, and protected antioxidant systems by increasing superoxide dismutase (SOD) and decreasing the oxidized glutathione (GSH)/total GSH and malondialdehyde (MDA) in the brain. Finally, EFAA prevented mitochondrial dysfunction via regulating apoptotic signaling molecules including phosphorylated Akt (p-Akt), phosphorylated tau (p-tau), Bax, and cytochrome c in the brain tissues. Therefore, the present study suggests that EFAA might be a potential source of natural antioxidants with the ability to ameliorate Aß-induced amnesia.
Assuntos
Actinidia/química , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Extratos Vegetais/administração & dosagem , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Frutas/química , Glutationa/metabolismo , Humanos , Aprendizagem/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Aprendizagem em Labirinto , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismoRESUMO
This study was conducted to assess the antioxidant capacity and protective effect of the ethyl acetate fraction from persimmon (Diospyros kaki) (EFDK) on H2O2-induced hippocampal HT22 cells and trimethyltin chloride (TMT)-induced Institute of Cancer Research (ICR) mice. EFDK had high antioxidant activities and neuroprotective effects in HT22 cells. EFDK ameliorated behavioral and memory deficits in Y-maze, passive avoidance and Morris water maze tests. Also, EFDK restored the antioxidant system by regulating malondialdehyde (MDA), superoxide dismutase (SOD) and reduced gluthathione (GSH), and the cholinergic system by controlling the acetylcholine (ACh) level and acetylcholinesterase (AChE) activity and expression. EFDK enhanced mitochondrial function by regulating reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP). Ultimately, EFDK regulated the c-Jun N-terminal kinase (JNK)/protein kinase B (Akt) pathway and apoptotic pathway by suppressing the expression of tumor necrosis factor-alpha (TNF-α), phosphorylated insulin receptor substrate 1 (IRS-1pSer), phosphorylated JNK (p-JNK), phosphorylated tau (p-tau), phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells (p-NF-κB), Bcl-2-associated X protein (BAX) and cytosolic cytochrome c, and increasing the expression of phosphorylated Akt (p-Akt) and mitochondrial cytochrome c. This study suggested that EFDK had antioxidant activity and a neuroprotective effect, and ameliorated cognitive abnormalities in TMT-induced mice by regulating the JNK/Akt and apoptotic pathway.
Assuntos
Acetatos/farmacologia , Cognição/efeitos dos fármacos , Diospyros/química , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neurônios/efeitos dos fármacos , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Contagem de Células , Disfunção Cognitiva , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismo , Células Piramidais/patologiaRESUMO
The ameliorating effects of the ethyl acetate fraction from Hibiscus sabdariffa L. (EFHS)2 against diabetes mellitus (DM)3 and DM-induced cognitive impairment were investigated on streptozotocin (STZ)4-induced DM mice. The EFHS groups showed improved hyperglycemia and glucose tolerance compared to the STZ group. Furthermore, their liver and kidney function and lipid metabolic imbalance in the blood serum were effectively recovered. The EFHS groups significantly ameliorated STZ-induced cognitive impairment in Y-maze, passive avoidance, and Morris water maze (MWM)5 tests. The EFHS groups showed significant improvement in the antioxidant and cholinergic systems of the brain tissue. In addition, EFHS had an excellent ameliorating effect on protein expression levels from the tau hyperphosphorylation pathways, such as phospho-c-Jun N-terminal kinases (p-JNK),6 phospho-tau (p-tau),7 and cleaved poly (ADP-ribose) polymerase (c-PARP).8 The main compounds of EFHS were identified as various phenolic compounds, including hibiscus acid, caffeoylquinic acid (CQA)9 isomers, and quercetin derivates. Therefore, EFHS containing various physiologically active materials can potentially be used for improving DM-induced cognitive impairment via its antioxidant activity, improvement of the cholinergic system, and hyperphosphorylation tau signaling.
Assuntos
Acetatos/química , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/prevenção & controle , Cognição/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Hibiscus , Hipoglicemiantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Solventes/química , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/isolamento & purificação , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Proteínas Ligadas por GPI/metabolismo , Hibiscus/química , Hipoglicemiantes/isolamento & purificação , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Lipídeos/sangue , Masculino , Camundongos Endogâmicos ICR , Fármacos Neuroprotetores/isolamento & purificação , Fosforilação , Extratos Vegetais/isolamento & purificação , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas tau/metabolismoRESUMO
BACKGROUND AND AIM: Surgery and other non-pharmacological treatments such as sacral nerve stimulation are used for the treatment of difficult-to-treat chronic constipation. Novel pharmacological therapeutic agents are also being introduced. To evaluate the efficacy of these treatments, it is imperative to have a consistent definition of pharmacologically refractory constipation. A systematic review of studies on refractory, difficult-to-treat or surgically treated constipation was carried out to determine the criteria that various authors used to define this group of patients. METHODS: A systematic review was performed for literature published from June 2005 to June 2015 using PubMed, Cochrane, and Scopus databases, as well as manual searches. Studies on patients with refractory or intractable constipation were extracted. Criteria used for defining refractory constipation, as well as pharmacological agents tried including dosage, frequency, and duration, were reviewed. RESULTS: Sixty-one studies were included in this review. Forty-eight involved surgical treatment of constipation, while 13 examined non-surgical therapies for refractory constipation. There is no generally accepted definition of refractory constipation. Authors consider constipation to be refractory when response to management is suboptimal, but there is no consensus on the choice of drug, order of usage, and dosage or treatment duration. Prior medical therapy was not mentioned at all in five studies. CONCLUSIONS: There is need for a detailed definition of pharmacologically refractory constipation before submitting patients to invasive treatments and to evaluate new pharmacological agents.
Assuntos
Constipação Intestinal , Doença Crônica , Colectomia , Constipação Intestinal/cirurgia , Constipação Intestinal/terapia , Bases de Dados Bibliográficas , Fibras na Dieta/administração & dosagem , Enema , Humanos , Laxantes/administração & dosagem , Probióticos/administração & dosagemRESUMO
The cognitive effect of Artemisia argyi H. under liquid-state fermentation by Monascus purpureus (AAFM), which has cellular antioxidant activity and neuronal cell viability, on trimethyltin- (TMT-) induced learning and memory impairment in Institute of Cancer Research (ICR) mice was confirmed. Tests were conducted to determine the neuroprotective effects against H2O2-induced oxidative stress, and the results showed that AAFM has protective effects through the repression of mitochondrial injury and cellular membrane damage against H2O2-induced neurotoxicity. In animal experiments, such as the Y-maze, passive avoidance, and Morris water maze tests, AAFM also showed excellent ameliorating effects on TMT-induced cognitive dysfunction. After behavioral tests, brain tissues were extracted to assess damage to brain tissue. According to the experimental results, AAFM improved the cholinergic system by upregulating acetylcholine (ACh) contents and inhibiting acetylcholinesterase (AChE) activity. AAFM effectively improved the decline of the superoxide dismutase (SOD) level and the increase of the oxidized glutathione (GSH) ratio and lipid peroxidation (malondialdehyde (MDA) production) caused by TMT-induced oxidative stress. The occurrence of mitochondrial dysfunction and apoptosis was also decreased compared with the TMT group. Finally, quinic acid derivatives were identified as the major phenolic compounds in AAFM using ultra-performance liquid chromatography quadrupole-time-of-flight (UPLC-Q-TOF) MS analysis.
RESUMO
The ameliorating effects of the ethyl acetate fraction from Dendropanax morbifera (EFDM) on cognitive impairment in high-fat diet (HFD)-induced diabetic mice were examined by measuring its possible pharmacological activities. Administration of EFDM (20 and 50mg/kg body weight) in HFD-induced diabetic mice significantly improved glucose tolerance status in the intraperitoneal glucose tolerance test (IPGTT). In animal experiments using Y-maze, passive avoidance and Morris water maze tests, the cognitive and behavioral disorders in HFD-induced diabetic mice were considerably recovered by regulating cholinergic systems, including acetylcholine (ACh) levels and acetylcholinesterase (AChE) inhibition, and antioxidant systems, including superoxide dismutase (SOD), glutathione (GSH), oxidized GSH, and malondialdehyde (MDA) levels. Furthermore, HFD-induced abnormal activity of mitochondria were also significantly protected by the improvement of the c-Jun N-terminal protein kinase (JNK) signaling pathway with phosphorylated JNK (p-JNK), phosphorylated insulin receptor substrate (p-IRS), serine/threonine protein kinase (Akt), phosphorylated Akt (p-Akt), and phosphorylated tau (p-tau). Finally, rutin, orientin, isoorientin, and luteolin-7-O-rutinoside as the main phenolics of EFDM were identified using ultra-performance liquid chromatography/quadrupole time of flight tandem mass spectrometry (UPLC-QTOF/MS(2)). These findings suggest that EFDM may have an effect as a multiple preventive substances to reduce diabetes-associated cognitive dysfunction.
Assuntos
Acetatos/administração & dosagem , Diabetes Mellitus Tipo 2/prevenção & controle , Hipoglicemiantes/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Acetatos/isolamento & purificação , Acetilcolina/metabolismo , Acetilcolinesterase/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Glicemia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/psicologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Teste de Tolerância a Glucose , Dissulfeto de Glutationa/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Magnoliopsida , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/administração & dosagem , Superóxido Dismutase/metabolismoRESUMO
Cross-cultural factors are important in functional gastrointestinal disorders (FGIDs). In the setting of FGIDs, the aims of this review were to: 1) engender interest in global aspects; 2) gain a clearer understanding of culture, race and ethnicity and their effect on patient care and research; 3) facilitate cross-cultural clinical and research competency; and 4) improve and foster the quality and conduct of cross-cultural, multinational research. Cultural variables are inevitably present in the physician-patient context. Food and diets, which differ among cultural groups, are perceived globally as related to or blamed for symptoms. From an individual perspective, biological aspects, such as genetics, the microbiome, environmental hygiene, cytokines and the nervous system, which are affected by cultural differences, are all relevant. Of equal importance are issues related to gender, symptom reporting and interpretation, and family systems. From the physician's viewpoint, understanding the patient's explanatory model of illness, especially in a cultural context, affects patient care and patient education in a multicultural environment. Differences in the definition and use of Complementary and Alternative Medicine and other issues related to healthcare services for the FGIDs are also a relevant cross-cultural issue. This paper highlights the importance of cross-cultural competence in clinical medicine and research.