Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(3): 691-701, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621873

RESUMO

Mentha canadensis, as a plant with medicinal and culinary uses, holds significant economic value. Jasmonic acid signaling repressor JAZ protein has a crucial role in regulating plant response to adversity stresses. The M. canadensis McJAZ8 gene is cloned and analyzed for protein characterization, protein interactions, and expression patterns, so as to provide genetic resources for molecular breeding of M. canadensis for stress tolerance. This experiment will analyze the protein structural characteristics, subcellular localization, protein interactions, and gene expression of McJAZ8 using bioinformatics, yeast two-hybrid(Y2H), transient expression in tobacco leaves, qRT-PCR, and other technologies. The results show that:(1)The full length of the McJAZ8 gene is 543 bp, encoding 180 amino acids. The McJAZ8 protein contains conserved TIFY and Jas domains and exhibits high homology with Arabidopsis thaliana AtJAZ1 and AtJAZ2.(2)The McJAZ8 protein is localized in the nucleus and cytoplasm.(3)The Y2H results show that McJAZ8 interacts with itself or McJAZ1/3/4/5 proteins to form homologous or heterologous dimers.(4)McJAZ8 is expressed in different tissue, with the highest expression level in young leaves. In terms of leaf sequence, McJAZ8 shows the highest expression level in the fourth leaf and the lowest expression level in the second leaf.(5) In leaves and roots, the expression of McJAZ8 is upregulated to varying degrees under methyl jasmonate(MeJA), drought, and NaCl treatments. The expression of McJAZ8 shows an initial upregulation followed by a downregulation pattern under CdCl_2 treatment. In leaves, the expression of McJAZ8 tends to gradually decrease under CuCl_2 treatment, while in roots, it initially decreases and then increases before decreasing again. In both leaves and roots, the expression of McJAZ8 is downregulated to varying degrees under AlCl_(3 )treatment. This study has enriched the research on jasmonic acid signaling repressor JAZ genes in M. canadensis and provided genetic resources for the molecular breeding of M. canadensis.


Assuntos
Ciclopentanos , Perfilação da Expressão Gênica , Mentha , Oxilipinas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Filogenia , Estresse Fisiológico/genética
2.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1494-1505, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621933

RESUMO

Mentha canadensis is a traditional Chinese herb with great medicinal and economic value. Abscisic acid(ABA) receptor PYLs have important roles in plant growth and development and response to adversity. The M. canadensis McPYL4 gene was cloned, and its protein characteristics, gene expression, and protein interactions were analyzed, so as to provide genetic resources for genetic improvement and molecular design breeding for M. canadensis resistance. Therefore, the protein characteristics, subcellular localization, gene expression pattern, and protein interactions of McPYL4 were analyzed by bioinformatics analysis, transient expression of tobacco leaves, RT-qPCR, and yeast two-hybrid(Y2H) techniques. The results showed that the McPYL4 gene was 621 bp in length, encoding 206 amino acids, and its protein had the conserved structural domain of SRPBCC and was highly homologous with Salvia miltiorrhiza SmPYL4. McPYL4 protein was localized to the cell membrane and nucleus. The McPYL4 gene was expressed in all tissue of M. canadensis, with the highest expression in roots, followed by leaves, and it showed a pattern of up-regulation followed by down-regulation in leaves 1-8. In both leaves and roots, the McPYL4 gene responded to the exogenous hormones ABA, MeJA, and the treatments of drought, AlCl_3, NaCl, CdCl_2, and CuCl_2. Moreover, McPYL4 was up-regulated for expression in both leaves and roots under the MeJA treatment, as well as in leaves treated with AlCl_3 stress for 1 h, whereas McPYL4 showed a tendency to be down-regulated in both leaves and roots under other treatments. Protein interactions showed that McPYL4 interacted with AtABI proteins in an ABA-independent manner. This study demonstrated that McPYL4 responded to ABA, JA, and several abiotic stress treatments, and McPYL4 was involved in ABA signaling in M. canadensis and thus in the regulation of leaf development and various abiotic stresses in M. canadensis.


Assuntos
Ácido Abscísico , Mentha , Ácido Abscísico/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , Secas
3.
J Neurogenet ; 37(4): 115-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37922205

RESUMO

Oxidative stress plays a significant role in the development of Parkinson's disease (PD). Previous studies implicate nuclear receptor subfamily 4 group A member 1 (NR4A1) in oxidative stress associated with PD. However, the molecular mechanism underlying the regulation of NR4A1 expression remains incompletely understood. In the present study, a PD cell model was established by using 1-methyl-4-phenylpyridinium (MPP+) in SH-SY5Y cells. Cell viability and apoptosis were assessed by using CCK-8 assay and flow cytometry, respectively. The activities of LDH and SOD, and ROS generation were used as an indicators of oxidative stress. ChIP-PCR was performed to detect the interaction between Yin Yang 1 (YY1) and the NR4A1 promoter. MPP+ treatment inhibited SH-SY5Y cell viability in a dose- and time-dependent manner. NR4A1 and YY1 expression were decreased in MPP+-treated SH-SY5Y cells. Increasing NR4A1 or YY1 alleviated MPP+-induced apoptosis and oxidative stress in SH-SY5Y cells, whereas reduction of NR4A1 aggravated MPP+-induced cell injury. Transcription factor YY1 facilitated NR4A1 expression by binding with NR4A1 promoter. In addition, in MPP+-treated SH-SY5Y cells, the inhibition of NR4A1 to apoptosis and oxidative stress was further enhanced by overexpression of YY1. The reduction of NR4A1 led to an elevation of apoptosis and oxidative stress in MPP+-induced SH-SY5Y cells, and this effect was partially reversed by the overexpression of YY1. In conclusion, YY1 suppresses MPP+-induced apoptosis and oxidative stress in SH-SY5Y cells by binding with NR4A1 promoter and boosting NR4A1 expression. Our findings suggest that NR4A1 may be a candidate target for PD treatment.HIGHLIGHTSNR4A1 and YY1 are decreased in MPP+-treated SH-SY5Y cells.NR4A1 prevents oxidative stress and apoptosis in MPP+-treated SH-SY5Y cells.YY1 binds with NR4A1 promoter and increases NR4A1 expression.YY1 enhances the inhibition of NR4A1 to SH-SY5Y cell apoptosis and oxidative stress.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Apoptose , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Estresse Oxidativo , Yin-Yang
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA