Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Virol J ; 19(1): 146, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096810

RESUMO

BACKGROUND: The evaluation of human papillomavirus (HPV) prevalence rate dynamics and genotype distribution could support the adoption of more targeted prevention and treatment of cervical cancer. We aimed to assess the infection status and genotype characteristics of HPV among gynecological outpatients in Shanghai, China. METHODS: Clinical specimens were collected from patients attending gynaecological department of the Putuo Hospital, Shanghai University of Traditional Chinese Medicine, between January 2015 and December 2019. The cervicovaginal infection of 17 high-risk genotypes and 10 low-risk genotypes were analyzed by Luminex-based multiple assays. RESULTS: The overall HPV infection rate was 18.81% (95% CI 18.31-19.30%) in Shanghai city, with high-risk, low-risk and mixed high- and low-risk HPV prevalence being 11.65% (95% CI 11.24-12.06%), 4.19% (95% CI 3.94-4.44%) and 2.96% (95% CI 2.74-3.17%), respectively. The five most prevalent high-risk genotypes were HPV-52 (2.95%), HPV-16 (2.34%), HPV-58 (2.07%), HPV-53 (1.67%) and HPV-39 (1.36%). The most common low-risk genotype was HPV-61 (1.52%), followed by HPV-6 (1.29%) and HPV-81 (1.19%). Moreover, the coverage of HPV genotype by nonavalent vaccine was 10.42%, and non-vaccine-covered high-risk genotype was 7.70%. The 15-24 years age group demonstrated the highest HPV prevalence (43.14%), and significant differences were observed among different age groups (P < 0.001). CONCLUSIONS: This study revealed the HPV prevalence and genotype distribution among women in Shanghai city, which could serve as guidance for HPV vaccination and preventative strategies against cervical cancer in this area.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Neoplasias do Colo do Útero , China/epidemiologia , Feminino , Genótipo , Humanos , Papillomaviridae/genética , Prevalência
2.
Front Pharmacol ; 13: 987997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091824

RESUMO

Background: Qinzhi Zhudan Formula (QZZD), optimized from Angong Niuhuang Wan, consists of Radix Scutellariae, Fructus Gardeniae and Pulvis Fellis Suis. We had investigated the neuroprotective effects of QZZD and its active components, and demonstrated that it could treat cerebral ischemia and dementia through multiple pathways and mechanisms. Nevertheless, toxicological data on this formula still remains limited. In the study, we sought to examine the toxicological effects of QZZD during the treatment and recovery periods. Methods: We investigated potential toxicities of QZZD in Sprague-Dawley (SD) rats via 28-day gavage administration. SD rats were randomly divided into control group and treatment groups of A (0.5 g/kg/d QZZD), B (1.5 g/kg/d QZZD), and C (5.0 g/kg/d QZZD). The 56-day course includes treatment period (administration with water or QZZD once a day for 28 consecutive days) and recovery period (28 days). The rats received daily monitoring of general signs of toxicity and mortality, as well as weekly determination of body weight and food consumption. Moreover, the complete blood cell count, biochemistry, coagulation, and urine indicators, organ weights, and histopathological report were analyzed respectively at the end of the treatment and recovery periods. Results: There was no death related to the active pharmaceutical ingredients of QZZD during the treatment period. The maximum no observed adverse effect level (NOAEL) was 0.5 g/kg/d, which is approximately 16.7 times of the equivalent dose of clinical dose in rats. In group TB (1.5 g/kg/d QZZD) and TC (5.0 g/kg/d QZZD), there were adverse effects of blue coloring of tail skin, weight loss, a significant increase of total bilirubin (TBIL), blackening of liver and kidney in gross examination, hyperplasia of bile duct and karyomegaly of hepatocytes in histopathological examination. Besides, in females rats, the food consumption was reduced, while in male rats, there was decrease in triglycerides (TG) and slight increase in white blood cell (WBC) count and neutrophils. In group TC (5.0 g/kg/d QZZD), the indicators of red blood cell (RBC) count, hemoglobin (HGB) and hematocrit (HCT) were decreased slightly, while the platelet count (PLT) was increased. However, these changes were not considered to be toxicologically significant because they resolved during the recovery period. Conclusion: Overall, QZZD exhibited a good safety profile. The maximum no observed adverse effect level was 0.5 g/kg/d, and no target organs toxicity were identified. The present findings might confirm the safety of QZZD in clinical practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA