Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 162: 114687, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062215

RESUMO

Cancer is still the leading cause of death worldwide, burdening the global medical system. Rosmarinic acid (RA) is among the first secondary metabolites discovered and it is a bioactive compound identified in plants such as Boraginaceae and Nepetoideae subfamilies of the Lamiaceae family, including Thymus masticmasti chinaythia koreana, Ocimum sanctum, and Hyptis pectinate. This updated review is to highlight the chemopreventive and chemotherapeutic effects of RA and its derivatives, thus providing valuable clues for the potential development of some complementary drugs in the treatment of cancers. Relevant information about RA's chemopreventive and chemotherapeutic effects and its derivatives were collected from electronic scientific databases, such as PubMed/Medline, Scopus, TRIP database, Web of Science, and Science Direct. The results of the studies showed numerous significant biological effects such as antiviral, antibacterial, anti-inflammatory, anti-tumour, antioxidant and antiangiogenic effects. Most of the studies on the anticancer potential with the corresponding mechanisms are still in the experimental preclinical stage and are missing evidence from clinical trials to support the research. To open new anticancer therapeutic perspectives of RA and its derivatives, future clinical studies must elucidate the molecular mechanisms and targets of action in more detail, the human toxic potential and adverse effects.


Assuntos
Lamiaceae , Neoplasias , Humanos , Extratos Vegetais/farmacologia , Plantas/metabolismo , Cinamatos/farmacologia , Depsídeos/farmacologia , Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico , Ácido Rosmarínico
2.
Molecules ; 28(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36677716

RESUMO

Elaeagnus angustifolia (EA) mediated green chemistry route was used for the biofabrication of NiONPs without the provision of additional surfactants and capping agents. The formation of NiONPs was confirmed using advanced different characterization techniques such as Scanning electron microscopy, UV, Fourier transmission-infrared, RAMAN, and energy dispersal spectroscopic and dynamic light scattering techniques. Further, different biological activities of EA-NiONPs were studied. Antibacterial activities were performed using five different bacterial strains using disc-diffusion assays and have shown significant results as compared to standard Oxytetracycline discs. Further, NiONPs exhibited excellent antifungal performance against different pathogenic fungal strains. The biocompatibility test was performed using human RBCs, which further confirmed that NiONPs are more biocompatible at the concentration of 7.51-31.25 µg/mL. The antioxidant activities of NiONPs were investigated using DPPH free radical scavenging assay. The NiONPs were demonstrated to have much better antioxidant potentials in terms of % DPPH scavenging (93.5%) and total antioxidant capacity (81%). Anticancer activity was also performed using HUH7 and HEP-G2 cancer cell lines and has shown significant potential with IC50 values of 18.45 µg/mL and 14.84 µg/mL, respectively. Further, the NiONPs were evaluated against Lesihmania tropica parasites and have shown strong antileishmanial potentials. The EA-NiONPs also showed excellent enzyme inhibition activities; protein kinase (19.4 mm) and alpha-amylase (51%). In conclusion, NiONPs have shown significant results against different biological assays. In the future, we suggest various in vivo activities for EA-NiONPs using different animal models to further unveil the biological and biomedical potentials.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Microsc Res Tech ; 85(6): 2338-2350, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35294072

RESUMO

In the recent years, green synthesis of zinc oxide nanoparticles (ZnONPs) using plant extracts and phytochemicals has gained significant attention. In present research study, facile, green, and tunable ZnONPs were biosynthesized from Rhamnella gilgitica leaf aqueous extract as a strong reducing and stabilizing agents. The prepared ZnONPs@Rhamnella were characterized and validated using common nanotechnology techniques (UV-Vis, XRD, EDX, FT-IR, SEM, TEM, DLS, and Raman) and revealed spherical morphology with particle size ~21 nm. The asynthesized ZnONPs were further evaluated for different biological applications. Strong antimicrobial efficacies were reported for ZnONPs using disc-diffusion method and were capable of rendering significant antimicrobial potential. ZnONPs were evaluated against HepG2 (IC50 : 18.40 µg/ml) and HUH7 (IC50 : 20.59 µg/ml) cancer cell lines and revealed strong anticancer properties. Dose-dependent MTT cytotoxicity assay was confirmed using Leishmania tropica "KWH23 strain" (promastigote: IC50 : 26.78 µg/ml and amastigote: IC50 : 29.57 µg/ml). Antioxidant activities (DPPH: 93.36%, TAC: 72.43%) were performed to evaluate their antioxidant potentials. Further, protein kinase and α-amylase inhibition assays were determined. Biocompatibility assays were done using human RBCs and macrophages thus revealed biosafe and non-toxic nature of ZnONPs@Rhamnella. In current experiment, we concluded that greenly orchestrated ZnONPs is an attractive, non-toxic and ecofriendly candidate and showed potential biological activities. In future, different clinical trials and in vivo studies are necessary for the confirmation of these remedial properties of ZnONPs using different animal models. RESEARCH HIGHLIGHTS: Greenly orchestrated ZnONPs were synthesized using Rhamnella gilgitica leaves broth. Analytical techniques such as UV, SEM, TEM, XRD, FTIR, DLS, and Raman confirmed synthesis of ZnONPs. Green ZnONPs determined strong antimicrobial, cytotoxic, and antioxidant potentials. Significant enzyme inhibition and biocompatibility assays were investigated.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óxido de Zinco , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Química Verde , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Óxido de Zinco/química
4.
Oxid Med Cell Longev ; 2022: 9366223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222807

RESUMO

Present study established the biological potential of Schweinfurthia papilionacea, Tricholepis glaberrima and Viola stocksii extracts for their potential applications in drug formulations. Initially, FTIR was performed to ascertain functional groups and then plant extracts were prepared using five solvents depending on the polarity. Total phenolic contents were observed in the range of 36.36 ± 1.08 mg GAE/g to 95.55 ± 2.46 mg GAE/g while flavonoid contents were found in the range of 10.51 ± 0.25 mg QE/g to 22.17 ± 1.79 mg QE/g. Antioxidant activity was determined using TRP, CUPRAC, TAC and DPPH assays and was recorded highest in S. papilionacea followed by T. glaberrima extracts. TPC and TFC were found to be strongly correlated with TRP (r > 0.50), CUPRAC (r > 0.53) and DPPH (r = 0.31 and 0.72) assay while weakly correlated with TAC (r = 0.08 and 0.03) as determined by Pearson correlation analysis. Anticancer activity showed that S. papilionacea chloroform extracts possess highest cell viability (85.04 ± 4.24%) against HepG2 cell lines while T. glaberrima chloroform extracts exhibited highest activity (82.80 ± 2.68%) against HT144 cell lines. Afterwards, highest PXR activation was observed in T. glaberrima (3.49 ± 0.34 µg/mL fold) at 60 µg/mL and was correlated with increase in CYP3A4 activity (15.0 ± 3.00 µg/mL IC50 value). Furthermore, antimalarial activity revealed >47600 IC50 value against P. falciparum D6 and P. falciparum W2 and antimicrobial assay indicated highest activity (32 ± 2.80 mm) in S. papilionacea against C. neoformans. At the end, GC-MS analysis of n-hexane plant extracts showed 99.104% of total identified compounds in T. glaberrima and 94.31% in V. stocksii. In conclusion, present study provides insight about the different biological potentials of S. papilionacea and T. glaberrima extracts that rationalize the applications of these extracts in functional foods and herbal drugs for the management of oxidative-stress related diseases, antimicrobial infections and liver and skin cancer.


Assuntos
Antineoplásicos/análise , Antioxidantes/análise , Citocromo P-450 CYP3A/metabolismo , Magnoliopsida/química , Receptor de Pregnano X/metabolismo , Anti-Infecciosos/análise , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Flavonoides/análise , Fungos/efeitos dos fármacos , Humanos , Magnoliopsida/classificação , Magnoliopsida/metabolismo , Metabolômica , Fenóis/análise , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Saudi J Biol Sci ; 28(11): 6086-6096, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764742

RESUMO

Medicinal plants largely serve as a source of bioactive compounds in traditional medicines to cure various diseases. The present study was aimed at chemical composition, antioxidant, antimicrobial, cytotoxic and antihemolytic potential of five different extracts of G. hispida and H. crispum (Boraginaceae). G. hispida methanolic extract displayed highest number (eleven) of polyphenolic compounds by using high performance liquid chromatography (HPLC). Functional groups were identified by Fourier-transformed infrared spectroscopy (FTIR) and elements (Si, Fe, Ba, Mg, Ti, Ca, Mg and Cr) were observed by using laser-induced breakdown spectroscopy (LIBS) which were also highly expressed in G. hispida as compared to H. crispum. Antioxidant activity was determined via six assays and antibacterial activity was observed in decreasing order of methanol > ethanol > chloroform > ethyl acetate > n-Hexane in both species. Cytotoxic potential was investigated against brine shrimps and then liver (HepG2) and skin (HT144) cancer cell lines which was detected highest in the G. hispida ethanolic extract (50.76 % and 72.95 %). However, H. crispum chloroform extract revealed highest (31.869 µg/mL) antihemolytic activity and its methanolic extract indicated highest (13.5 %) alpha-amylase inhibitory potential. Altogether, results suggested that both species could be used effectively in food and drug industries owing to the presence of vital bioactive compounds and elements. In future, we recommend to isolate active compounds and to perform in vivo biological assays to further validate their potential biological applications.

6.
Sci Rep ; 11(1): 20988, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697404

RESUMO

Due to their versatile applications, ZnONPs have been formulated by several approaches, including green chemistry methods. In the current study, convenient and economically viable ZnONPs were produced using Elaeagnus angustifolia (EA) leaf extracts. The phytochemicals from E. angustifolia L. are believed to serve as a non-toxic source of reducing and stabilizing agents. The physical and chemical properties of ZnONPs were investigated employing varying analytical techniques (UV, XRD, FT-IR, EDX, SEM, TEM, DLS and Raman). Strong UV-Vis absorption at 399 nm was observed for green ZnONPs. TEM, SEM and XRD analyses determined the nanoscale size, morphology and crystalline structure of ZnONPs, respectively. The ZnONPs were substantiated by evaluation using HepG2 (IC50: 21.7 µg mL-1) and HUH7 (IC50: 29.8 µg mL-1) cancer cell lines and displayed potential anticancer activities. The MTT cytotoxicity assay was conducted using Leishmania tropica "KWH23" (promastigotes: IC50, 24.9 µg mL-1; and amastigotes: IC50, 32.83 µg mL-1). ZnONPs exhibited excellent antimicrobial potencies against five different bacterial and fungal species via the disc-diffusion method, and their MIC values were calculated. ZnONPs were found to be biocompatible using human erythrocytes and macrophages. Free radical scavenging tests revealed excellent antioxidant activities. Enzyme inhibition assays were performed and revealed excellent potential. These findings suggested that EA@ZnONPs have potential applications and could be used as a promising candidate for clinical development.


Assuntos
Técnicas de Química Sintética , Elaeagnaceae/química , Química Verde , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Óxido de Zinco/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Testes de Sensibilidade Microbiana , Análise Espectral
7.
Microsc Res Tech ; 84(8): 1809-1820, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33600024

RESUMO

Sophora alopecuroides L. is a highly medicinal plant. The aim of the current study was to determine the phytochemical screening, pharmacological potentials and application of scanning electron microscope (SEM) of S. alopecuroides (SA) seeds. To achieve this purpose, six different solvents were used to prepare SA seed extracts. Phytochemical and antioxidant activities were determined calorimetrically. To investigate the antidiabetic activity, α-amylase inhibition assay was determined. Brine shrimp assay was used to determine cytotoxicity potential. Anti-leishmanial potential was confirmed using MTT assay. Disc-diffusion method was used to detect protein kinase inhibitory, antibacterial and antifungal activities and showed significant results. SEM analysis was used as an identification tool. Considerable amount of phenolic and flavonoid contents were identified in methanol extract (SASM) (93.76 ± 2.71 GAE/mg) and (77 ± 3.60 QE/mg). Highest DPPH scavenging potential (82%) was reported for SASM. Significant total antioxidant capacity (90.60 ± 1.55 alpha amylase enzyme [AAE]/mg) and total reducing power (94.44 ± 1.38 AAE/mg) were determined for LOSM. Highest α-amylase inhibition was reported in SASM (78.20 ± 1.58%). Highest LD50 of brine shrimp was found for n-hexane extract (SASH) 13.03 µg/ml. All extracts showed strong anti-leishmanial activity except SASH. The seeds of SA were seen to be oblong to obovate, projections, wavy slightly straight, anticlinal wall was raised with apex acuminate. In conclusion, our experimental findings highly support the ethnomedicinal and biological potentials of the SA seeds. Moreover, SA seeds need to be explored for identification and isolation of bioactive compounds. In future, we recommend further in vivo toxicity assays and clinical efficacies to further evaluate its different biomedical properties.


Assuntos
Anti-Infecciosos , Sophora , Antibacterianos , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Microscopia Eletrônica de Varredura , Extratos Vegetais/farmacologia , Sementes
8.
Microsc Res Tech ; 84(6): 1284-1295, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33400331

RESUMO

Lactuca orientalis (Boiss.) Boiss. is one of the most frequently used ethnomedicinal plant. This research study was designed to decipher the phytochemical screening, pharmacological potential and implementation of scanning electron microscope (SEM). Six different solvents were used to prepare L. orientalis (LO) seed extracts. Phytochemical and antioxidant activities were determined calorimetrically. To investigate antidiabetic, α-amylase inhibition assay was performed. Brine shrimp assay was performed for cytotoxicity and anti-leishmanial via MTT assay. Disc-diffusion assay was performed to detect protein kinase inhibitory, antibacterial and antifungal activities. SEM was used as identification tool. Significant amount of phenolic and flavonoid content were identified in methanol extract (LOSM) (95.76 ± 3.71 GAE/mg) and (77 ± 3.60 QE/mg). Highest DPPH scavenging potential (82%) was reported for LOSM. Significant total antioxidant capacity (90.60 ± 1.55 AAE/mg) and total reducing power (94.44 ± 1.38 AAE/mg) were determined for LOSM. Highest α-amylase inhibition was found in LOSM (78.20 ± 1.58%). The highest LD50 of brine shrimp was found for n-Hexane extract (LOSH) 13.03 𝜇g/ml. All extracts showed strong anti-leishmanial activity except LOSH. L. orientalis seeds showed significant protein kinase inhibition, antibacterial and antifungal activities. The seeds of L. orientalis were seen to be oblong to obovate, projections, wavy slightly straight, anticlinal wall was raised with apex acuminate. The outer-periclinal wall convex with fine texture. In conclusion, our findings scientifically support ethnomedicinal and biological potentials of L. orientalis seeds. In future, L. orientalis seeds need to be explored for identification and isolation of bioactive compounds. The results obtained necessitate further in vivo studies to evaluate their pharmacological potentials.


Assuntos
Anti-Infecciosos , Antioxidantes , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Microscopia Eletrônica de Varredura , Extratos Vegetais/farmacologia , Sementes
9.
Microsc Res Tech ; 84(2): 192-201, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33332709

RESUMO

The tunable cobalt oxide nanoparticles (CoONPs) are produced due to the phytochemicals present in Rhamnus virgata (RhV) leaf extract which functions as reducing and stabilization agents. The synthesis of CoONPs was confirmed using different analytical techniques: UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), dynamics light scatterings (DLS), Fourier-transform infrared spectroscopy (FTIR), energy dispersive X-ray, and Raman spectroscopy analyses. Furthermore, multiple biological activities were performed. Significant antifungal and antibacterial potentials have been reported. The in vitro cytotoxic assays of CoONPs revealed strong anticancer activity against human hepatoma HUH-7 (IC50 : 33.25 µg/ml) and hepatocellular carcinoma HepG2 (IC50 : 11.62 µg/ml) cancer cells. Dose-dependent cytotoxicity potency was confirmed against Leishmania tropica (KMH23 ); amastigotes (IC50 : 58.63 µg/ml) and promastigotes (IC50 : 32.64 µg/ml). The biocompatibility assay using red blood cells (RBCs; IC50 : 4,636 µg/ml) has confirmed the bio-safe nature of CoONPs. On the whole, results revealed nontoxic nature of RhV-CoONPs with promising biological potentials.


Assuntos
Antineoplásicos/farmacologia , Antiparasitários/farmacologia , Cobalto/química , Nanopartículas Metálicas/química , Óxidos/química , Extratos Vegetais/química , Folhas de Planta/química , Rhamnus/química , Linhagem Celular Tumoral , Humanos , Leishmania tropica/efeitos dos fármacos , Análise Espectral , Difração de Raios X
10.
Microsc Res Tech ; 83(11): 1308-1320, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32666568

RESUMO

In the present study, green silver nanoparticles (Ag2 ONPs) were prepared from aqueous and ethanolic leaves extract of Rhamnus virgata in a facile, green, cost-effective, and eco-friendly way. The color changes from light brown to brownish black determined the synthesis of Ag2 ONPs(Aq) and Ag2 ONPs(Et) . The phytofabrication of Ag2 ONPs was confirmed using various spectroscopic and microscopic techniques: energy-dispersive X-ray spectroscopy, dynamic light scattering, ultraviolet-visible spectroscopy, Fourier-transform infrared, X-ray powder diffraction, Raman, scanning electron microscopy, and transmission electron microscopy. Detailed in vitro biological activities determined significant biopotentials for Ag2 ONPs. The Ag2 ONPs(Aq) and Ag2 ONPs(Et) were investigated for anticancer potential against HUH-7 (IC50 : 9.075 µg/ml for Ag2 O(Aq) and 25.66 µg/ml for Ag2 O(Et) ) and HepG2 (IC50 : 25.18 µg/ml for Ag2 O(Aq) and IC50 : 27.74 µg/ml for Ag2 O(Aq) ) cell lines. Concentration-dependent cytotoxicity was performed against brine-shrimps (IC50 : 36.04 µg/ml for Ag2 O(Aq) and 28.82 µg/ml for Ag2 O(Et) ) and Leishmanial parasite (amastigotes and promastigotes). Disc-diffusion method revealed significant antimicrobial activities. In addition, significant enzyme inhibitory activity and antiradical potentials were studied. The hemocompatible nature of Ag2 ONPs(Aq) and Ag2 ONPs(Et) was revealed using biocompatibility tests. In conclusion, the green Ag2 ONPs(Aq) and Ag2 ONPs(Et) are nontoxic and biocompatible and has shown significant biological activities. We further encourage in vivo studies to ensure biosafety and biocompatibility, so that they can be effectively utilized in nano-pharmaceutical industries.


Assuntos
Nanopartículas Metálicas , Química Verde , Humanos , Óxidos , Extratos Vegetais/farmacologia , Prata/farmacologia , Compostos de Prata , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Microsc Res Tech ; 83(6): 706-719, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32170794

RESUMO

Green synthesis of nanoparticles using plants has become a promising substitute for the conventional chemical synthesis methods. In the present study, our aim was to synthesize chromium oxide nanoparticles (Cr2 O3 NPs) through a facile, low-cost, eco-friendly route using leaf extract of Rhamnus virgata (RV). The formation of Cr2 O3 NPs was confirmed and characterized by spectroscopic profile of UV-Vis, EDX, FTIR, and XRD analyses. The UV-visible spectroscopy has confirmed the formation of Cr2 O3 NPs by the change of color owing to surface plasmon resonance. The bioactive functional groups present in the leaf extract of RV involved in reduction and stabilization of Cr2 O3 NPs were determined by FTIR analysis. Based on XRD analysis, crystalline nature of Cr2 O3 NPs was determined. The morphological shape and elemental composition of Cr2 O3 NPs were investigated using SEM and EDX analyses, respectively. With growing applications of Cr2 O3 NPs in biological perspectives, Cr2 O3 NPs were evaluated for diverse biopotentials. Cr2 O3 NPs were further investigated for its cytotoxicity potentials against HepG2 and HUH-7 cancer cell lines (IC50 : 39.66 and 45.87 µg/ml), respectively. Cytotoxicity potential of Cr2 O3 NPs was confirmed against promastigotes (IC50 : 33.24 µg/ml) and amastigotes (IC50 : 44.31 µg/ml) using Leishmania tropica (KMH23 ). The Cr2 O3 NPs were further evaluated for antioxidants, biostatic, alpha-amylase, and protein kinase inhibition properties. Biocompatibility assay was investigated against human macrophages which confirmed the nontoxic nature of Cr2 O3 NPs. Overall, the synthesized Cr2 O3 NPs are biocompatible and nontoxic and proved to possess significant biopotentials. In future, different in vivo studies are needed to fully investigate the cytotoxicity and mechanism of action associated with these Cr2 O3 NPs.


Assuntos
Compostos de Cromo/química , Química Verde , Nanopartículas Metálicas/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Compostos de Cromo/farmacologia , Cristalização , Células Epiteliais/efeitos dos fármacos , Células Hep G2 , Humanos , Leishmania tropica/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
12.
Pharmacol Rep ; 71(4): 644-652, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31181380

RESUMO

Globally, esophagus cancer (EC) is one of the most frequently reported malignancies and leading cause of deaths. Currently, different treatment methods are available like chemotherapy, radiation therapy, surgery or their combination. These treatment strategies are not enough and are often associated with adverse side effects. The alternate treatment option like phytochemicals have come up with ease of bioavailability and cost-effectiveness. Due to general acceptance, lower side effects, safety and pleiotropic effect, phytochemicals can be used as an adjuvant treatment for alleviating side effects associated with chemotherapy and radiotherapy. Phytochemicals perform multiple functions; release cytochrome-c, loss mitochondrial membrane potential, down-regulate expression of anti-apoptotic proteins, up-regulate pro-apoptotic proteins, activate caspases, p53, inhibit Akt/mTOR signaling pathway, phosphorylate NF-κB, STAT3 and PI3K. The knowledge compiled here encompasses anti-EC phytochemicals, their occurrence, bioavailability therapeutic effects and mechanism of action by targeting several genes and signaling pathways. Overall, the clinical data compiled on phytochemicals against EC is not sufficient and need future research to provide additional insights for developing potential anticancer drugs in pharma industries.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Compostos Fitoquímicos/uso terapêutico , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Regulação para Baixo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/prevenção & controle , Humanos , Compostos Fitoquímicos/farmacologia , Plantas Medicinais/química , Regulação para Cima
13.
Biomed Pharmacother ; 109: 1381-1393, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30551389

RESUMO

Skin cancer is a life threatening disease and their prevalence and risk has been increasing over the past three decades causing significant loss to human health worldwide. Mostly skin cancer has developed resistance against chemotherapy and radiotherapy. Therefore, development of novel, cost effective and efficient treatment methods are needed. Phytochemicals extracted from medicinal plants and dietary sources are often biologically active and has attracted the attention of researchers and pharmaceutical industries around the world. Many in vitro and in vivo studies of these bioactive compounds have shown potential antioxidant, anti-proliferative, anti-inflammatory and anti-angiogenic effects in the fight against skin cancer. These phytochemicals also regulate several other molecular processes such as angiogenesis, metastasis and cell cycle to combat skin cancer. The present review provides perspectives on the key phytochemicals, their therapeutic potentials, bioavailability and molecular mechanism of action in the cancer therapeutics. Current challenges and future directions for research are also critically discussed.


Assuntos
Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Antioxidantes/metabolismo , Ciclo Celular/efeitos dos fármacos , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
14.
Biomolecules ; 10(1)2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31888037

RESUMO

This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet-visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.


Assuntos
Geranium/química , Nanopartículas , Extratos Vegetais/química , Folhas de Planta/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/toxicidade , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/toxicidade , Células Hep G2 , Humanos , Leishmania/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Teste de Materiais , Testes de Sensibilidade Microbiana , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/toxicidade , Óxido de Zinco/toxicidade
15.
Eur J Pharmacol ; 827: 125-148, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29535002

RESUMO

Breast cancer (BC) is a devastating disease in female around the world causing significant health care burden in both developed and developing countries. In many cases BC has shown resistance to chemotherapy, radiation and hormonal therapy. Development of new, cost effective, affordable treatment method is the need of hour. Chemical compounds isolated from plants are often biologically active and is attracting the attention of scientific community. Different in vitro and in vivo studies have shown a potential role in reducing the risk of cancer metastasis. Large number of phytochemicals are considered to regulate several molecular and metabolic processes like cell cycle regulation, apoptosis activation, angiogenesis and metastatic suppression that can hinders cancer progression. An extensive review of literature has been conducted to underline the key phytochemicals and their mechanism of action. This review article has discussed in detail the regulatory roles of phytochemicals, their analogs and nanoformulations and the probability of using phytochemicals in therapeutic management of BC. Finally, current limitations, challenges and future perspectives of these phytochemicals are also critically discussed.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Descoberta de Drogas/métodos , Compostos Fitoquímicos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Compostos Fitoquímicos/uso terapêutico
16.
BMC Complement Altern Med ; 18(1): 27, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361962

RESUMO

BACKGROUND: Oxidative stress as well as bacterial and fungal infections are common source of diseases while plants are source of medication for curative or protective purposes. Hence, aim of study was to compare the pharmacological potential of seven grass species in two different solvents i.e. ethanol and acetone. METHODS: Preliminary phytochemical tests were done and antioxidant activities were evaluated using ELISA and their IC50 values and AAI (%) were recorded. ANOVA was used for statistical analyses. DNA damage protection assay was done using p1391Z plasmid DNA and DNA bands were analyzed. Antimicrobial activity was done via disc diffusion method and MIC and Activity Index were determined. Cytotoxic activity was carried out using the brine shrimps' assay and LC50 values were calculated using probit analysis program. RESULTS: Phytochemical studies confirmed the presence of secondary metabolites in most of the plant extracts. Maximum antioxidant potential was revealed in DiAEE, DiAAE (AAI- 54.54% and 43.24%) and DaAEE and DaAAE (AAI- 49.13% and 44.52%). However, PoAEE and PoAAE showed minimum antioxidant potential (AAI- 41.04% and 34.11%). SaSEE, DiAEE and ElIEE showed very little DNA damage protection activity. In antimicrobial assay, DaAEE significantly inhibited the growth of most of the microbial pathogens (nine microbes out of eleven tested microbes) among ethanol extracts while DaAAE and ImCAE showed maximum inhibition (eight microbes out of eleven tested microbes) among acetone plant extracts. However, PoAEE and PoAAE showed least antimicrobial activity. F. oxysporum and A. niger were revealed as the most resistant micro-organisms. ImCEA and ImCAE showed maximum cytotoxic potential (LC50 11.004 ppm and 7.932 ppm) as compared to the other plant extracts. CONCLUSION: Fodder grasses also contains a substantial phenols and flavonoids contents along with other secondary metabolites and, hence, possess a significant medicinal value. Ethanol extracts showed more therapeutic potential as compared to the acetone extracts. This study provides experimental evidence that the selected species contains such valuable natural compounds which can be used as medicinal drugs in future.


Assuntos
Antioxidantes/farmacologia , Extratos Vegetais/farmacologia , Poaceae/química , Animais , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Artemia/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Flavonoides/química , Flavonoides/farmacologia , Fungos/efeitos dos fármacos , Paquistão , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA