Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 199: 46-55, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24486085

RESUMO

This study investigated the pathways involved in EGCG modulation of insulin-like growth factor (IGF)-stimulated glucose uptake in 3T3-L1 adipocytes. EGCG inhibited IGF-I and IGF-II stimulation of adipocyte glucose uptake with dose and time dependencies. EGCG at 20µM for 2h decreased IGF-I- and IGF-II-stimulated glucose uptake by 59% and 64%, respectively. Pretreatment of adipocytes with antibody against the EGCG receptor (also known as the 67-kDa laminin receptor; 67LR), prevented the effects of EGCG on IGF-increased glucose uptake, but pretreatment with normal rabbit immunoglobulin did not. This suggests that the 67LR mediates the anti-IGF effect of EGCG on adipocyte glucose uptake. Further analysis indicated EGCG, IGF-I, and IGF-II did not alter total levels of GLUT1 or GLUT4 protein. However, EGCG prevented the IGF-increased GLUT4 levels in the plasma membrane and blocked the IGF-decreased GLUT4 levels in low-density microsomes. Neither EGCG nor its combination with IGF altered GLUT1 protein levels in the plasma membrane and low-density microsomes. EGCG also suppressed the IGF-stimulated phosphorylation of IGF signaling molecules, PKCζ/λ, but not AKT and ERK1/2, proteins. This study suggests that EGCG suppresses IGF stimulation of 3T3-L1 adipocyte glucose uptake through inhibition of the GLUT4 translocation, but not through alterations of the GLUT1 pathway.


Assuntos
Adipócitos/metabolismo , Catequina/análogos & derivados , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Fator de Crescimento Insulin-Like II/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Chá/química , Células 3T3-L1 , Acetilcisteína/farmacologia , Adipócitos/efeitos dos fármacos , Animais , Anticorpos/metabolismo , Catequina/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Transporte Proteico , Receptores de Laminina/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Planta Med ; 76(15): 1694-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20455202

RESUMO

Insulin and (-)-epigallocatechin gallate (EGCG) are reported to regulate obesity and fat accumulation, respectively. This study investigated the pathways involved in EGCG modulation of insulin-stimulated glucose uptake in 3T3-L1 and C3H10T1/2 adipocytes. EGCG inhibited insulin stimulation of adipocyte glucose uptake in a dose- and time-dependent manner. The concentration of EGCG that decreased insulin-stimulated glucose uptake by 50-60% was approximately 5-10 µM for a period of 2 h. At 10 µM, EGCG and gallic acid were more effective than (-)-epicatechin, (-)-epigallocatechin, and (-)-epicatechin 3-gallate. We identified the EGCG receptor [also known as the 67-kDa laminin receptor (67LR)] in fat cells and extended the findings for this study to clarify whether EGCG-induced changes in insulin-stimulated glucose uptake in adipocytes could be mediated through the 67LR. Pretreatment of adipocytes with a 67LR antibody, but not normal rabbit immunoglobulin, prevented the effects of EGCG on insulin-increased glucose uptake. This suggests that the 67LR mediates the effect of EGCG on insulin-stimulated glucose uptake in adipocytes. Moreover, pretreatment with an AMP-activated protein kinase (AMPK) inhibitor, such as compound C, but not with a glutathione (GSH) activator, such as N-acetyl-L-cysteine (NAC), blocked the antiinsulin effect of EGCG on adipocyte glucose uptake. These data suggest that EGCG exerts its anti-insulin action on adipocyte glucose uptake via the AMPK, but not the GSH, pathway. The results of this study possibly support that EGCG mediates fat content.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Catequina/análogos & derivados , Glucose/metabolismo , Insulina/farmacologia , Receptores de Laminina/fisiologia , Chá/química , Animais , Catequina/química , Catequina/isolamento & purificação , Catequina/farmacologia , Camundongos , Camundongos Endogâmicos C3H , Células NIH 3T3
3.
Planta Med ; 76(7): 694-6, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19937554

RESUMO

Green tea catechins, especially (-)-epigallocatechin-3-gallate (EGCG), are known to regulate obesity and fat accumulation. We performed a kinetic analysis in a cell-free system to determine the mode of inhibition of glycerol-3-phosphate dehydrogenase (GPDH; EC 1.1.1.8) by EGCG. GPDH catalyzes the beta-nicotinamide adenine dinucleotide (NADH)-dependent reduction of dihydroxyacetone phosphate (DHAP) to yield glycerol-3-phosphate, which serves as one of the major precursors of triacylglycerols. We found that EGCG dose-dependently inhibited GPDH activity at a concentration of approximately 20 muM for 50 % inhibition. The IC (50) values of other green tea catechins, such as (-)-epicatechin, (-)-epicatechin-3-gallate, and (-)-epigallocatechin, were all above 100 microM. This suggests a catechin type-dependent effect. Based on double-reciprocal plots of the kinetic data, EGCG was a noncompetitive inhibitor of the GPDH substrates, NADH and DHAP, with respective inhibition constants (Ki) of 18 and 31 microM. Results of this study possibly support previous studies that EGCG mediates fat content.


Assuntos
Catequina/análogos & derivados , Glicerol-3-Fosfato Desidrogenase (NAD+)/antagonistas & inibidores , Catequina/farmacologia , Avaliação Pré-Clínica de Medicamentos , Triglicerídeos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA