Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 6634, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758235

RESUMO

The role of disturbance in accelerating weed growth is well understood. While most studies have focused on soil mediated disturbance, mowing can also impact weed traits. Using silverleaf nightshade (Solanum elaeagnifolium), a noxious and invasive weed, through a series of field, laboratory, and greenhouse experiments, we asked whether continuous mowing influences growth and plant defense traits, expressed via different avenues, and whether they cascade into offspring. We found that mowed plants produced significantly less number of fruits, and less number of total seeds per plant, but had higher seed mass, and germinated more and faster. When three herbivores were allowed to feed, tobacco hornworm (Manduca sexta) caterpillars, gained more mass on seedlings from unmowed plants, while cow pea aphid (Aphis craccivora), a generalist, established better on mowed seedlings; however, leaf trichome density was higher on unmowed seedlings, suggesting possible negative cross talk in defense traits. Texas potato beetle (Leptinotarsa texana), a co-evolved specialist on S. elaeagnifolium, did not show any differential feeding effects. We also found that specific root length, an indicator of nutrient acquisition, was significantly higher in first generation seedlings from mowed plants. Taken together, we show that mowing is a selective pressure that enhances some fitness and defense traits and can contribute to producing superweeds.


Assuntos
Adaptação Fisiológica , Desenvolvimento Vegetal , Plantas Daninhas , Solanum , Aclimatação , Herbivoria , Espécies Introduzidas , Característica Quantitativa Herdável , Sementes
2.
Am J Bot ; 108(1): 74-82, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33450062

RESUMO

PREMISE: Inbreeding depression is well documented in flowering plants and adversely affects a wide range of fitness-related traits. Recent work has begun to explore the effects of inbreeding on ecological interactions among plants and other organisms, including insect herbivores and pathogens. However, the effects of inbreeding on floral traits, floral scents, and pollinator visitation are less well studied. METHODS: Using inbred and outbred maternal families of horsenettle (Solanum carolinense, Solanaceae), we examined the effects of inbreeding on traits associated with pollinator attraction and floral rewards. Specifically, we measured corolla size, counted pollen grains per flower, and analyzed floral volatile emissions via gas chromatography and mass spectrometry. We also examined pollinator visitation to experimental arrays of flowering inbred and outbred plants under field conditions. RESULTS: Compared to those of outbred plants, flowers of inbred plants exhibited reduced corolla size and pollen production, as well as significantly reduced emission of the two most abundant volatile compounds in the floral blend. Furthermore, bumblebees-the main pollinators of horsenettle-discriminated against inbred flowers in the field: bees were more likely to make initial visits to flowers on outbred plants, visited outbred flowers more often overall, and spent more time on outbred flowers. CONCLUSIONS: These results show that inbreeding can (1) alter floral traits that are known to mediate pollinator attraction; (2) reduce the production of floral rewards (pollen is the sole reward in horsenettle); and (3) adversely affect pollinator visitation under field conditions.


Assuntos
Polinização , Solanum , Animais , Abelhas , Flores , Cromatografia Gasosa-Espectrometria de Massas , Endogamia , Recompensa , Solanum/genética
3.
Plant Signal Behav ; 15(9): 1784545, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32580616

RESUMO

Bioactive compounds such as polyphenols in plants have been well studied for their potential insecticidal activities. These are considered as safe alternatives against chemical pesticides because of their lower persistence in environment, lower toxicity to humans and other organisms. However, they are present constitutively in lower amounts in plants and have to undergo complicated extraction methods - hampering their commercial exploitation in pest management. Using an inexpensive extraction method developed to recover polyphenol-rich liquid extract from purple corn pericarp, we recently documented that this extract has anti-feeding effects that cascade from larval to adult stages in a model herbivore tobacco hornworm (Manduca sexta). However, M. sexta does not feed on corn or any other major crops other than the species in the nightshade family (Solanaceae). In this study, we explored the same idea but using a generalist and common herbivore on corn, the fall armyworm (Spodoptera frugiperda). We found that purple corn pericarp extract inhibited the larval growth and development as well as negatively affected the pupal stages of S. frugiperda. However, unlike on M. sexta, time to complete larval life cycle was unaffected. Our findings confirm the toxicity of this extract on a generalist, economically important herbivore, but also suggest potential species-specific effects that should be explored further.


Assuntos
Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/química , Spodoptera/efeitos dos fármacos , Zea mays/química , Animais , Controle de Pragas
4.
BMC Ecol ; 20(1): 8, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32039719

RESUMO

BACKGROUND: Breeding programs and research activities where artificial buzz-pollinations are required to have primarily relied upon using tuning forks, and bumble bees. However, these methods can be expensive, unreliable, and inefficient. To find an alternative, we tested the efficiency of pollen collection using electric toothbrushes and compared it with tuning forks at three vibration frequencies-low, medium, and high and two extraction times at 3 s and 16 s- from two buzz-pollinated species (Solanum lycopersicum and Solanum elaeagnifolium). RESULTS: Our results show that species, and extraction time significantly influenced pollen extraction, while there were no significant differences for the different vibration frequencies and more importantly, the use of a toothbrush over tuning fork. More pollen was extracted from S. elaeagnifolium when compared to S. lycopersicum, and at longer buzzing time regardless of the instrument used. CONCLUSIONS: Our results suggest that electric toothbrushes can be a viable and inexpensive alternative to tuning forks, and regardless of the instrument used and buzzing frequency, length of buzzing time is also critical in pollen extraction.


Assuntos
Polinização , Solanum lycopersicum , Animais , Abelhas , Flores , Pólen
5.
Biol Lett ; 13(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28490447

RESUMO

The spines of flowering plants are thought to function primarily in defence against mammalian herbivores; however, we previously reported that feeding by Manduca sexta caterpillars on the leaves of horsenettle plants (Solanum carolinense) induces increased development of internode spines on new growth. To determine whether and how spines impact caterpillar feeding, we conducted assays with three Solanaceous plant species that vary in spine numbers (S. carolinense, S. atropurpureum and S. aethiopicum) and also manipulated spine numbers within each species. We found that M. sexta caterpillars located experimentally isolated target leaves much more quickly on plants with experimentally removed spines compared with plants with intact spines. Moreover, it took caterpillars longer to defoliate species with relatively high spine numbers (S. carolinense and particularly Satropurpureum) compared with S. aethiopicum, which has fewer spines. These findings suggest that spines may play a significant role in defence against insect herbivores by restricting herbivore movement and increasing the time taken to access feeding sites, with possible consequences including longer developmental periods and increased vulnerability or apparency to predators.


Assuntos
Herbivoria , Animais , Insetos , Larva , Manduca , Folhas de Planta , Solanum
6.
Proc Biol Sci ; 284(1849)2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28228510

RESUMO

Plant trichomes constitute a first line of defence against insect herbivores. The pre- and post-ingestive defensive functions of glandular trichomes are well documented and include direct toxicity, adhesion, antinutrition and defence gene induction. By contrast, the defensive functions of non-glandular trichomes are less well characterized, although these structures are thought to serve as physical barriers that impede herbivore feeding and movement. We experimentally varied the density of stellate non-glandular trichomes in several ways to explore their pre- and post-ingestive effects on herbivores. Larvae of Manduca sexta (Sphingidae) initiated feeding faster and gained more weight on Solanum carolinense (Solanaceae) leaves having lower trichome densities (or experimentally removed trichomes) than on leaves having higher trichome densities. Adding trichomes to artificial diet also deterred feeding and adversely affected caterpillar growth relative to controls. Scanning electron and light microscopy revealed that the ingestion of stellate trichomes by M. sexta caterpillars caused extensive damage to the peritrophic membrane, a gut lining that is essential to digestion and pathogen isolation. These findings suggest that, in addition to acting as a physical barrier to deter feeding, trichomes can inhibit caterpillar growth and development via post-ingestive effects.


Assuntos
Herbivoria , Manduca , Folhas de Planta/anatomia & histologia , Solanum , Tricomas/anatomia & histologia , Animais , Sistema Digestório/patologia
7.
Plant Signal Behav ; 10(5): e998548, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26039489

RESUMO

Inbreeding commonly occurs in flowering plants and often results in a decline in the plant's defense response. Insects prefer to feed and oviposit on inbred plants more than outbred plants--suggesting that selecting inbred host plants offers them fitness benefits. Until recently, no studies have examined the effects of host plant inbreeding on insect fitness traits such as growth and dispersal ability. In a recent article, we documented that tobacco hornworm (Manduca sexta L.) larvae that fed on inbred horsenettle (Solanum carolinense L.) plants exhibited accelerated larval growth and increased adult flight capacity compared to larvae that fed on outbred plants. Here we report that M. sexta mortality decreased by 38.2% when larvae were reared on inbred horsenettle plants compared to larvae reared on outbreds. Additionally, inbred plants showed a notable reduction in the average relative expression levels of lipoxygenease-D (LoxD) and 12-oxophytodienoate reductase-3 (OPR3), two genes in the jasmonic acid signaling pathway that are upregulated in response to herbivore damage. Our study presents evidence that furthers our understanding of the biochemical mechanism responsible for differences in insect performance on inbred vs. outbred host plants.


Assuntos
Herbivoria , Endogamia , Manduca/fisiologia , Solanum/genética , Animais , Expressão Gênica , Larva/fisiologia , Lipoxigenase/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
8.
Am J Bot ; 101(2): 376-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24509799

RESUMO

PREMISE OF THIS STUDY: The mediation of plant-insect interactions by plant odors has been studied extensively, but most previous work has focused on documenting the role of constitutive and herbivore- or pathogen-induced plant volatiles as foraging cues for insect herbivores and their natural enemies. Relatively little work has explored genotypic variation in plant-odor profiles within species, and few studies have addressed the perception and use of olfactory cues by lepidopteran larvae or other herbivores during feeding. METHODS: We examined the effects of plant breeding (inbred vs. outbred individuals) and plant exposure to prior herbivory on the preferences of caterpillars (Manduca sexta) for odors of Solanum carolinense in leaf-disc and whole-plant choice assays. KEY RESULTS: Second- and third-instar larvae of M. sexta clearly and consistently preferred undamaged over herbivore-damaged plants of both breeding types and also consistently preferred inbred over outbred plants that had the same damage status. Similar preferences were observed even when plants were covered with bridal-veil cloth to mask visual cues, demonstrating that olfactory cues influence larval preferences. CONCLUSIONS: The observed preferences are consistent with our previous findings regarding the constitutive and induced volatile profiles of inbred and outbred horsenettle plants and their effects on plant-herbivore interactions. They furthermore correspond to differences in host-plant quality predicted by previous work and, thus, suggest that naive larvae of M. sexta can accurately assess aspects of host-plant quality via olfactory cues perceived at a distance.


Assuntos
Herbivoria , Endogamia , Larva , Manduca , Odorantes , Folhas de Planta , Solanum/fisiologia , Animais , Doenças das Plantas , Solanum/genética , Solanum/metabolismo , Compostos Orgânicos Voláteis/metabolismo
9.
Am J Bot ; 100(6): 1014-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23545253

RESUMO

PREMISE OF THE STUDY: A growing number of studies document effects of inbreeding on plant interactions with insect herbivores, including deleterious effects on direct and indirect plant defenses. However, our understanding of the specific mechanisms mediating such effects remains limited. Here we examine how inbreeding affects constitutive and induced expression of structural defenses (spines and trichomes) in common horsenettle, Solanum carolinense. • METHODS: Inbred and outbred progeny from nine maternal families of horsenettle were assigned to three treatments: control, Manduca sexta caterpillar damage, or mechanical damage. Numbers of internode spines and the density of abaxial and adaxial trichomes were assessed before and after (21 d) damage treatments. Data on internode length, flowering time, and total flower production was also collected to explore the costs of defense induction. • KEY RESULTS: Inbreeding adversely affected constitutive and induced physical/structural defenses: undamaged outbred plants produced more abaxial and adaxial leaf trichomes and internode spines than did inbred plants. Foliar damage by M. sexta larvae also induced more trichomes (on new leaves) and internode spines on outbred plants. Both inbred and outbred plants exposed to mechanical or caterpillar damage had shorter internodes than did control plants, but inbred damaged plants had longer internodes than did outbred damaged plants. Control outbred plants produced significantly more flowers than did control inbred plants or damaged plants of either breeding type. • CONCLUSIONS: Constitutive and induced structural defenses in horsenettle were negatively affected by inbreeding. Reduced flower production and internode length on damaged plants compared to controls suggests that defense induction entails significant costs.


Assuntos
Herbivoria/fisiologia , Endogamia , Manduca/fisiologia , Solanum/genética , Solanum/fisiologia , Animais , Larva/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia
10.
Proc Biol Sci ; 280(1757): 20130020, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23446531

RESUMO

Plant volatiles serve as key foraging and oviposition cues for insect herbivores as well as their natural enemies, but little is known about how genetic variation within plant populations influences volatile-mediated interactions among plants and insects. Here, we explore how inbred and outbred plants from three maternal families of the native weed horsenettle (Solanum carolinense) vary in the emission of volatile organic compounds during the dark phase of the photoperiod, and the effects of this variation on the oviposition preferences of Manduca sexta moths, whose larvae are specialist herbivores of Solanaceae. Compared with inbred plants, outbred plants consistently released more total volatiles at night and more individual compounds-including some previously reported to repel moths and attract predators. Female moths overwhelmingly chose to lay eggs on inbred (versus outbred) plants, and this preference persisted when olfactory cues were presented in the absence of visual and contact cues. These results are consistent with our previous findings that inbred plants recruit more herbivores and suffer greater herbivory under field conditions. Furthermore, they suggest that constitutive volatiles released during the dark portion of the photoperiod can convey accurate information about plant defence status (and/or other aspects of host plant quality) to foraging herbivores.


Assuntos
Endogamia , Manduca/efeitos dos fármacos , Óleos Voláteis/metabolismo , Solanum/genética , Animais , Sinais (Psicologia) , Escuridão , Feminino , Manduca/fisiologia , Análise Multivariada , Óleos Voláteis/farmacologia , Oviposição/efeitos dos fármacos , Solanum/metabolismo
11.
Plant Signal Behav ; 7(7): 803-6, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22751298

RESUMO

Inbreeding is common in flowering plants, but relatively few studies have examined its effects on interactions between plants and other organisms, such as herbivores and pathogens. In a recent paper, we documented effects of inbreeding depression on plant volatile signaling phenotypes, including elevated constitutive volatile emissions (and consequently greater herbivore recruitment to inbred plants) but reduced emission of key herbivore-induced volatiles that attract predatory and parasitic insects to damaged plants. While the effects of inbreeding on plant-insect interactions have been explored in only a few systems, even less is known about its effects on plant-pathogen interactions. Here we report the effects of inbreeding on horsenettle susceptibility to powdery mildew (Oidium neolycopersici), including more rapid onset of infection in inbred plants, particularly when plants were not previously damaged. These data suggest that inbreeding may increase plant susceptibility to pathogen infection and, therefore, may potentially facilitate pathogen establishment in natural populations.


Assuntos
Ascomicetos/fisiologia , Endogamia , Doenças das Plantas/microbiologia , Solanum/microbiologia , Animais , Suscetibilidade a Doenças , Larva/fisiologia , Modelos Logísticos , Manduca/fisiologia , Doenças das Plantas/parasitologia , Doenças das Plantas/estatística & dados numéricos , Solanum/parasitologia
12.
Ecol Lett ; 15(4): 301-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22257268

RESUMO

The ecological consequences of inter-individual variation in plant volatile emissions remain largely unexplored. We examined the effects of inbreeding on constitutive and herbivore-induced volatile emissions in horsenettle (Solanum carolinense L.) and on the composition of the insect community attracted to herbivore-damaged and undamaged plants in the field. Inbred plants exhibited higher constitutive emissions, but weaker induction of volatiles following herbivory. Moreover, many individual compounds previously implicated in the recruitment of predators and parasitoids (e.g. terpenes) were induced relatively weakly (or not at all) in inbred plants. In trapping experiments, undamaged inbred plants attracted greater numbers of generalist insect herbivores than undamaged outcrossed plants. But inbred plants recruited fewer herbivore natural enemies (predators and parasitoids) when damaged. Taken together, these findings suggest that inbreeding depression negatively impacts the overall pattern of volatile emissions - increasing the apparency of undamaged plants to herbivores, while reducing the recruitment of predatory insects to herbivore-damaged plants.


Assuntos
Endogamia , Solanum/química , Solanum/genética , Compostos Orgânicos Voláteis/química , Animais , Herbivoria , Insetos , Fenótipo , Folhas de Planta/química , Terpenos/química
13.
PLoS One ; 6(12): e28459, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174810

RESUMO

The clonal weed Solanum carolinense exhibits plasticity in the strength of its self-incompatibility (SI) system and suffers low levels of inbreeding depression (δ) in the greenhouse. We planted one inbred and one outbred plant from each of eight maternal plants in a ring (replicated twice) and monitored clonal growth, herbivory, and reproduction over two years. Per ramet δ was estimated to be 0.63 in year one and 0.79 in year two, and outbred plants produced 2.5 times more ramets than inbred plants in the spring of year two. Inbred plants also suffered more herbivore damage than outbred plants in both fields, suggesting that inbreeding compromises herbivore resistance. Total per genet δ was 0.85 over the two years, indicating that S. carolinense is unlikely to become completely self-compatible, and suggesting that plasticity in the SI system is part of a stable mixed-mating system permitting self-fertilization when cross pollen limits seed production.


Assuntos
Agricultura/métodos , Evolução Biológica , Endogamia , Solanum/crescimento & desenvolvimento , Herbivoria/fisiologia , Reprodução/fisiologia , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA