Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Matrix Biol ; 111: 53-75, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35671866

RESUMO

Pulmonary hypertension (PH) comprises a diverse group of disorders that share a common pathway of pulmonary vascular remodeling leading to right ventricular failure. Development of anti-remodeling strategies is an emerging frontier in PH therapeutics that requires a greater understanding of the interactions between vascular wall cells and their extracellular matrices. The ubiquitous matrix glycan, hyaluronan (HA), is markedly elevated in lungs from patients and experimental models with PH. Herein, we identified HA synthase-2 (HAS2) in the pulmonary artery smooth muscle cell (PASMC) layer as a predominant locus of HA dysregulation. HA upregulation involves depletion of NUDT21, a master regulator of alternative polyadenylation, resulting in 3'UTR shortening and hyper-expression of HAS2. The ensuing increase of HAS2 and hyper-synthesis of HA promoted bioenergetic dysfunction of PASMC characterized by impaired mitochondrial oxidative capacity and a glycolytic shift. The resulting HA accumulation stimulated pro-remodeling phenotypes such as cell proliferation, migration, apoptosis-resistance, and stimulated pulmonary artery contractility. Transgenic mice, mimicking HAS2 hyper-synthesis in smooth muscle cells, developed spontaneous PH, whereas targeted deletion of HAS2 prevented experimental PH. Pharmacological blockade of HAS2 restored normal bioenergetics in PASMC, ameliorated cell remodeling phenotypes, and reversed experimental PH in vivo. In summary, our results uncover a novel mechanism of HA hyper-synthesis and downstream effects on pulmonary vascular cell metabolism and remodeling.


Assuntos
Metabolismo Energético , Hialuronan Sintases , Ácido Hialurônico , Hipertensão Pulmonar , Regiões 3' não Traduzidas/genética , Animais , Proliferação de Células , Metabolismo Energético/genética , Humanos , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/biossíntese , Hipertensão Pulmonar/enzimologia , Camundongos , Camundongos Transgênicos , Miócitos de Músculo Liso/enzimologia
2.
Br J Pharmacol ; 177(21): 4845-4850, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32442317

RESUMO

Coronavirus disease 2019 (COVID-19), the disease resulting from infection by a novel coronavirus, SARS-Cov2, has rapidly spread since November 2019 leading to a global pandemic. SARS-Cov2 has infected over four million people and caused over 290,000 deaths worldwide. Although most cases are mild, a subset of patients develop a severe and atypical presentation of acute respiratory distress syndrome (ARDS) that is characterised by a cytokine release storm (CRS). Paradoxically, treatment with anti-inflammatory agents and immune regulators has been associated with worsening of ARDS. We hypothesize that the intrinsic circadian clock of the lung and the immune system may regulate individual components of CRS, and thus, chronotherapy may be used to effectively manage ARDS in COVID-19 patients. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/efeitos adversos , Betacoronavirus/imunologia , Betacoronavirus/isolamento & purificação , COVID-19 , Ritmo Circadiano/fisiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/virologia , Cronofarmacoterapia , Humanos , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2 , Tratamento Farmacológico da COVID-19
3.
Eur J Radiol ; 64(3): 381-96, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17931813

RESUMO

Current techniques to evaluate the efficacy of potential treatments for airways diseases in preclinical models are generally invasive and terminal. In the past few years, the flexibility of magnetic resonance imaging (MRI) to obtain anatomical and functional information of the lung has been explored with the scope of developing a non-invasive approach for the routine testing of drugs in models of airways diseases in small rodents. With MRI, the disease progression can be followed in the same animal. Thus, a significant reduction in the number of animals used for experimentation is achieved, as well as minimal interference with their well-being and physiological status. In addition, under certain circumstances the duration of the observation period after disease onset can be shortened since the technique is able to detect changes before these are reflected in parameters of inflammation determined using invasive procedures. The objective of this article is to briefly address MRI techniques that are being used in experimental lung research, with special emphasis on applications. Following an introduction on proton techniques and MRI of hyperpolarized gases, the attention is shifted to the MRI analysis of several aspects of lung disease models, including inflammation, ventilation, emphysema, fibrosis and sensory nerve activation. The next subject concerns the use of MRI in pharmacological studies within the context of experimental lung research. A final discussion points towards advantages and limitations of MRI in this area.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Pneumopatias/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Animais , Modelos Animais de Doenças , Aumento da Imagem/métodos , Pneumopatias/fisiopatologia , Pneumonia/fisiopatologia , Enfisema Pulmonar/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Fenômenos Fisiológicos Respiratórios
4.
NMR Biomed ; 20(3): 154-85, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17451175

RESUMO

Imaging modalities such as micro-computed tomography (micro-CT), micro-positron emission tomography (micro-PET), high-resolution MRI, optical imaging, and high-resolution ultrasound have become invaluable tools in preclinical pharmaceutical research. They can be used to non-invasively investigate, in vivo, rodent biology and metabolism, disease models, and pharmacokinetics and pharmacodynamics of drugs. The advantages and limitations of each approach usually determine its application, and therefore a small-rodent imaging laboratory in a pharmaceutical environment should ideally provide access to several techniques. In this paper we aim to illustrate how these techniques may be used to obtain meaningful information for the phenotyping of transgenic mice and for the analysis of compounds in murine models of disease.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Imageamento Tridimensional , Animais , Meios de Contraste , Modelos Animais de Doenças , Humanos , Camundongos , Sondas Moleculares , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA