RESUMO
Peptide receptor radionuclide therapy (PRRT) is a treatment for neuroendocrine tumours (NET). Renal impairment is a known side effect due to kidney fibrosis. We investigated the association between novel specific fibrosis markers and kidney function following PRRT. We included 38 patients who had all finished PRRT. In serum and urine, we analysed levels of three different fibrosis markers, PRO-C6 (type VI collagen formation), PRO-C3 (type III collagen formation) and C3M (type III collagen degradation). We determined kidney function by the 51Cr-EDTA plasma clearance. We used Wilcoxon rank sum test and Spearman's rank correlation to evaluate the association between the fibrosis markers and kidney function. We included 38 NET patients, 25 small-intestinal NET, 6 pancreatic NET, 2 pulmonary NET and 5 other types of NET. Median age was 69 years (IQR: 61-73). Median time from last PRRT to inclusion was 8 months (IQR: 3-20). We found significantly increased levels of serum PRO-C6 (p = .007) and urinary PRO-C6 (p = .033) and significantly decreased levels of urinary C3M (p = .035) in patients with impaired kidney function. Further, we observed a negative association between serum PRO-C6 and kidney function (rho = -0.33, p = .04) and a positive association between urinary C3M and kidney function (rho = 0.37, p = .02). We showed an association between the three fibrosis markers, serum PRO-C6, urinary PRO-C6 and urinary C3M and kidney function. These markers may help to improve the understanding of potential pathological tissue turnover and potentially improve monitoring of kidney function after PRRT in NET patients.
Assuntos
Tumores Neuroendócrinos , Idoso , Biomarcadores , Colágeno Tipo III , Colágeno Tipo VI , Complemento C3 , Ácido Edético , Fibrose , Humanos , Rim/metabolismo , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/radioterapia , Radioisótopos , Receptores de Peptídeos/metabolismoRESUMO
The pathogenesis of psoriatic arthritis (PsA) involves inflammation and bone and soft tissue turnover. Dietary fatty acids have previously been associated with pro-inflammatory effects induced by saturated fatty acids (SFA) and anti-inflammatory effects achieved by at least some polyunsaturated fatty acids (PUFA). The aim of the study was to investigate the correlations between the content of fatty acids in granulocytes and clinical and biochemical markers of PsA. A total of 140 patients with PsA were included. Skin and joint disease activity were assessed. Fatty acid composition in granulocytes was determined by gas chromatography. Competitive enzyme-linked immunosorbent assays were used to assess bone and soft tissue turnover. The content of SFA, n-6 PUFA or n-3 PUFA in granulocytes was not associated with disease activity. Marine n-3 PUFA was significantly positively correlated with collagen degradation. In contrast, n-6 PUFA was significantly positively correlated with collagen formation and negatively correlated with collagen degradation. However, the correlations were all weak. No association was found between the content of fatty acids in granulocytes and disease activity in this population of patients with PsA. The correlation between fatty acids and biomarkers of bone and soft tissue turnover needs further investigation.
Assuntos
Artrite Psoriásica , Ácidos Graxos Ômega-3 , Artrite Psoriásica/diagnóstico , Artrite Psoriásica/tratamento farmacológico , Biomarcadores , Colágeno , Ácidos Graxos , Ácidos Graxos Ômega-3/farmacologia , HumanosRESUMO
Psoriatic arthritis (PsA) is a chronic inflammatory disease characterized by involvement of skin, axial and peripheral skeleton. An altered balance between extracellular matrix (ECM) formation and breakdown is a key event in PsA, and changes in ECM protein metabolites may provide insight to tissue changes. Dietary fish oils (n-3 PUFA) might affect the inflammation driven tissue turnover. The aim was to evaluate ECM metabolites in patients with PsA compared to healthy individuals and investigate the effects of n-3 PUFA. The 24-week randomized, double-blind, placebo-controlled trial of PUFA included 142 patients with PsA. Fifty-seven healthy individuals were included for comparison. This study is a sub-study investigating biomarkers of tissue remodelling as secondary outcomes. Serum samples at baseline and 24 weeks and healthy individuals were obtained, while a panel of ECM metabolites reflecting bone and soft tissue turnover were measured by ELISAs: PRO-C1, PRO-C3, PRO-C4, C1M, C3M, C4M, CTX-I and Osteocalcin (OC). C1M, PRO-C3, PRO-C4 and C4M was found to be elevated in PsA patients compared to the healthy individuals (from 56 to 792%, all p < 0.0001), where no differences were found for OC, CTX-I, PRO-C1 and C3M. PRO-C3 was increased by 7% in patients receiving n-3 PUFA after 24 weeks compared to baseline levels (p = 0.002). None of the other biomarkers was changed with n-3 PUFA treatment. This indicates that tissue turnover is increased in PsA patients compared to healthy individuals, while n-3 PUFA treatment for 24 weeks did not have an effect on tissue turnover. Trial registration NCT01818804. Registered 27 March 2013-Completed 18 February 2016. https://clinicaltrials.gov/ct2/show/NCT01818804?term=NCT01818804&rank=1.
Assuntos
Artrite Psoriásica/tratamento farmacológico , Proteínas da Matriz Extracelular/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Adulto , Artrite Psoriásica/fisiopatologia , Biomarcadores/metabolismo , Método Duplo-Cego , Proteínas da Matriz Extracelular/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
Connective tissue (ConT) remodeling is an essential process in tissue regeneration, where a balanced replacement of old tissue by new tissue occurs. This balance is disturbed in chronic diseases, often autoimmune diseases, usually resulting in the buld up of fibrosis and a gradual loss of organ function. During progression of liver, lung, skin, heart, joint, skeletal and kidney diseasesboth ConT formation and degradation are elevated, which is tightly linked to immune cell activation and a loss of specific cell types and extracellular matrix (ECM) structures that are required for normal organ function. Here, we address the balance of key general and organ specific components of the ECM during homeostasis and in disease, with a focus on collagens, which are emerging as both structural and signaling molecules harbouring neoepitopes and autoantigens that are released during ConT remodeling. Specific collagen molecular signatures of ConT remodeling are linked to disease activity and stage, and to prognosis across different organs. These signatures accompany and further drive disease progression, and often become detectable before clinical disease manifestation (illness). Recent advances allow to quantify and define the nature of ConT remodeling via blood-based assays that measure the levels of well-defined collagen fragments, reflecting different facets of ConT formation and degradation, and associated immunological processes. These novel serum assays are becoming important tools of precision medicine, to detect various chronic and autoimmune diseases before their clinical manifestation, and to non-invasively monitor the efficacy of a broad range of pharmacological interventions.
Assuntos
Doenças Autoimunes , Autoimunidade , Tecido Conjuntivo , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/terapia , Doença Crônica , Tecido Conjuntivo/patologia , Matriz Extracelular , HumanosRESUMO
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a rapidly progressing disease with challenging management. To find novel effective therapies, better preclinical models are needed for the screening of anti-fibrotic compounds. Activated fibroblasts drive fibrogenesis and are the main cells responsible for the accumulation of extracellular matrix (ECM). Here, a prolonged Scar-in-a-Jar assay was combined with clinically validated biochemical markers of ECM synthesis to evaluate ECM synthesis over time. To validate the model as a drug screening tool for novel anti-fibrotic compounds, two approved compounds for IPF, nintedanib and pirfenidone, and a compound in development, omipalisib, were tested. METHODS: Primary human lung fibroblasts from healthy donors were cultured for 12 days in the presence of ficoll and were stimulated with TGF-ß1 with or without treatment with an ALK5/TGF-ß1 receptor kinase inhibitor (ALK5i), nintedanib, pirfenidone or the mTOR/PI3K inhibitor omipalisib (GSK2126458). Biomarkers of ECM synthesis were evaluated over time in cell supernatants using ELISAs to assess type I, III, IV, V and VI collagen formation (PRO-C1, PRO-C3, PRO-C4, PRO-C5, PRO-C6), fibronectin (FBN-C) deposition and α-smooth muscle actin (α-SMA) expression. RESULTS: TGF-ß1 induced synthesis of PRO-C1, PRO-C6 and FBN-C as compared with unstimulated fibroblasts at all timepoints, while PRO-C3 and α-SMA levels were not elevated until day 8. Elevated biomarkers were reduced by suppressing TGF-ß1 signalling with ALK5i. Nintedanib and omipalisib were able to reduce all biomarkers induced by TGF-ß1 in a concentration dependent manner, while pirfenidone had no effect on α-SMA. CONCLUSIONS: TGF-ß1 stimulated synthesis of type I, III and VI collagen, fibronectin and α-SMA but not type IV or V collagen. Synthesis was increased over time, although temporal profiles differed, and was modulated pharmacologically by ALK5i, nintedanib, pirfenidone and omipalisib. This prolonged 12-day Scar-in-a-Jar assay utilising biochemical markers of ECM synthesis provides a useful screening tool for novel anti-fibrotic compounds.
Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Cicatriz/induzido quimicamente , Cicatriz/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Biomarcadores/metabolismo , Células Cultivadas , Cicatriz/tratamento farmacológico , Colágeno/antagonistas & inibidores , Colágeno/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibronectinas/antagonistas & inibidores , Fibronectinas/metabolismo , Fibrose/induzido quimicamente , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Humanos , Indóis/antagonistas & inibidores , Indóis/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Piridonas/antagonistas & inibidores , Piridonas/metabolismo , Fator de Crescimento Transformador beta1/toxicidadeRESUMO
Organ fibrosis is characterized by a chronic wound-healing response, with excess deposition of extracellular matrix components. Here, collagen type I represents the most abundant scar component and a primary target for antifibrotic therapies. Liver fibrosis can progress to cirrhosis and primary liver cancer, which are the major causes of liver related morbidity and mortality. However, a (pro-)collagen type I specific therapy remains difficult and its therapeutic abrogation may incur unwanted side effects. We therefore designed tetracycline-regulated procollagen alpha1(I) short hairpin (sh)RNA expressing mice that permit a highly efficient inducible knockdown of the procollagen alpha1(I) gene in activated (myo-)fibroblasts, to study the effect of induced procollagen type I deficiency. Transgenic mice were generated using recombinase-mediated integration in embryonic stem cells or zinc-finger nuclease-aided genomic targeting combined with miR30-shRNA technology. Liver fibrosis was induced in transgenic mice by carbon tetrachloride, either without or with doxycycline supplementation. Doxycycline treated mice showed an 80-90% suppression of procollagen alpha1(I) transcription and a 40-50% reduction in hepatic collagen accumulation. Procollagen alpha1(I) knockdown also downregulated procollagens type III, IV and VI and other fibrosis related parameters. Moreover, this was associated with an attenuation of chronic inflammation, suggesting that collagen type I serves not only as major scar component, but also as modulator of other collagens and promoter of chronic inflammation.
Assuntos
Colágeno Tipo I/genética , Proteínas da Matriz Extracelular/genética , Cirrose Hepática/prevenção & controle , Pró-Colágeno/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Cirrose Hepática/genética , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/farmacologiaRESUMO
The clinical utility of Traditional Chinese Medicine (TCM) herbs/roots extracts in osteoporosis (OP) and osteoarthritis (OA) has been described in multiple reports, but there have been few studies of TCM for preventing bone loss and cartilage degradation simultaneously. Six-month-old female Sprague-Dawley rats each were subjected to ovariectomized (OVX) or sham surgery and treated orally once daily with herbal extracts or vehicle. Body weight was recorded weekly, and blood samples were collected from fasting animals at different time points. Biochemical markers of bone resorption and cartilage degradation were analyzed. Changes in bone mineral density and calcium content were determined in the femoral center and femoral telocentric end of rats. Out of 56 TCM herbs/roots extracts, only kudzu root demonstrated consistent joint protective effects. OVX resulted in a marked increase in bone resorption and cartilage degradation, which could be significantly reversed by kudzu after three weeks of treatment. Compared to vehicle, kudzu induced a significant increase in bone mineral density in the femoral center and femoral telocentric end, and calcium content. The results show that kudzu exerts direct effects on articular cartilage in the OVX rat and can effectively prevent the acceleration of cartilage degradation induced by ovariectomy. Moreover, kudzu has demonstrated positive effects on metabolic health (cause a weight reduction) and may represent a possible treatment for OP and OA with high body mass index. Further studies are needed to investigate the potential effects of kudzu root in postmenopausal women.
RESUMO
Imatinib mesylate is a tyrosine kinase inhibitor used in the management of disorders in which activation of c-Abl, PDGFR, or c-Kit signaling plays a critical role. In vitro, imatinib stimulates osteoblast differentiation, inhibits osteoblast proliferation and survival, and decreases osteoclast development. Patients treated with imatinib exhibit altered bone and mineral metabolism, with stable or increased bone mass. However, recovery from the underlying disease and/or weight gain might contribute to these effects. We therefore investigated the skeletal effects of imatinib in healthy rats. We evaluated the effects of imatinib on bone volume, markers of bone turnover, and bone histomorphometry in mature female rats treated for 5 weeks with either vehicle, imatinib 40 mg/kg daily, or imatinib 70 mg/kg daily. Compared to vehicle, imatinib reduced trabecular bone volume/tissue volume (mean [SD]: vehicle 26.4% [5.4%], low-dose imatinib 24.8% [4.9%] [P = 0.5], high-dose imatinib 21.1% [5.7%] [P = 0.05]), reduced osteoblast surface (mean [SD]: vehicle 12.8% [5.8%], low-dose 6.8% [1.9%] [P < 0.01], high-dose 7.8 [3.1%] [P < 0.05]), and reduced serum osteocalcin (mean change from baseline [95% CI]: vehicle -8.2 [-26.6 to 10.2] ng/ml, low dose -79.7 [-97.5 to -61.9] ng/ml [P < 0.01 vs. vehicle], high-dose -66.0 [-82.0 to -50.0] ng/ml [P < 0.05 vs. vehicle]). Imatinib did not affect biochemical or histomorphometric indices of bone resorption. These results suggest that, in healthy animals, treatment with imatinib does not increase bone mass and that the improvements in bone density reported in patients receiving imatinib may not be a direct effect of the drug.
Assuntos
Osso e Ossos/efeitos dos fármacos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/farmacologia , Benzamidas , Biomarcadores/análise , Biomarcadores/metabolismo , Remodelação Óssea/efeitos dos fármacos , Osso e Ossos/anatomia & histologia , Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Feminino , Mesilato de Imatinib , Tamanho do Órgão/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteocalcina/sangue , Osteocalcina/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Ratos , Ratos WistarRESUMO
OBJECTIVE: To identify, characterize, and compare proteolysis peptide products generated by metalloprotease digests of human articular cartilage. METHODS: Human articular cartilage was digested by the addition of exogenous metalloproteases, including matrix metalloproteinases 2, 3, 8, 9, 12, and 13 and aggrecanases ADAMTS-4 and ADAMTS-5. Proteolyzed peptide products were identified by proteomics methods using mass spectrometry. RESULTS: Complete sequences of the peptides proteolyzed from human articular cartilage, including N- and C-termini and hydroxylated posttranslational modifications, were determined. A wide variety of peptides, originating from types I, II, and III collagen, biglycan, prolargin, fibromodulin, fibronectin, decorin, cartilage oligomeric matrix protein, cartilage intermediate-layer protein, megakaryocyte-stimulating factor, mimecan, aggrecan, and lumican, was analyzed following metalloprotease digestion. Release of peptides varied as a function of time, enzyme specificity, and abundance. Specific type II collagen peptide biomarkers, including those containing the three-quarter-length fragment cleavage site and those containing the domains for helical peptide of type II collagen and C-telopeptide of type II collagen, were observed after release by selected proteases. CONCLUSION: The use of intact cartilage instead of purified protein substrates in the assay allowed for the identification of novel potential substrates and cleavage sites for individual enzymes under more physiologically relevant conditions. Characterization of these cartilage matrix peptides may help in the development of pharmacodynamic biomarkers of cartilage degradation, and also may contribute to an understanding of the bioactive peptides important in chondrocyte signaling.