Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oxid Med Cell Longev ; 2020: 9369524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32190179

RESUMO

Aging has been characterized with the accumulation of oxidized proteins, as a consequence of progressive decline in proteostasis capacity. Among others, proteasomal system is an efficient protein turnover complex to avoid aggregation of oxidized proteins. Heat shock protein 70 (HSP70) is another critical player that is involved in some key processes including the correct folding of misfolded proteins and targeting aggregated proteins to the proteasome for rapid degradation. The aim of this study was to determine the role of proteasomal system and heat shock proteins to maintain proteome balance during replicative senescence in mild hyperthermia conditions. Our results demonstrated that HSP40/70 machinery is induced by mild hyperthermia conditions independent from senescence conditions. Since HSP70 is largely responsible for the rapidly inducible cell protection following hyperthermia, the activation of "heat shock response" resulted in the elevation of HSP40/70 expressions as well as the proteasome activity. Interestingly, when HSP70 expression was inhibited, increased proteasomal activation was shown to be responsive to mild hyperthermia. Since HSP70 is involved in various stress-related pathways such as oxidative and endoplasmic reticulum stress, depletion of HSP70 expression may induce proteasomal degradation to maintain proteome balance of the cell. Thus, our data suggests that in mild heat stress conditions, molecular chaperone HSP70 plays an important role to avoid protein oxidation and aggregation; however, activities of proteasomal system are induced when HSP70 expression is depleted.


Assuntos
Senescência Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Hipertermia Induzida , Complexo de Endopeptidases do Proteassoma/metabolismo , Compostos Benzidrílicos/farmacologia , Senescência Celular/genética , Inativação Gênica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Resposta ao Choque Térmico/genética , Humanos , Masculino , Proteostase , Pirrolidinonas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Clin Nutr ; 37(6 Pt A): 2166-2171, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29126716

RESUMO

BACKGROUND: Walnuts contain many components including specific fatty acids, which could be active against cancer. Even though the anticarcinogenic effect of some of the individual fatty acids in walnut oil has been described, the effect of walnut oil itself on esophageal cancer cells hasn't yet been investigated. OBJECTIVE: We aimed to investigate whether walnut oil affects tumor growth and metastatic potential in esophageal cancer cells. METHODS: The human esophageal adenocarcinoma cell line, OE19, was treated with different doses of walnut oil and cell viability, apoptosis/necrosis and cell cycle analyses were performed using WST-1 assay and flow cytometry respectively. Adhesion, colony formation and wound healing assays were performed to assess the antimetastatic effects of walnut oil. NFkB expression was evaluated with western blot analysis. RESULTS: Walnut oil decreased the cell viability of esophageal cancer cells in a dose-dependent manner. 20 mg/mL walnut oil reduced cell viability by ∼50% when compared with control. The analysis revealed that necrosis and accumulation of cells in G0/G1 phase was induced in the cells treated with high doses of walnut oil. It also down-regulated the protein levels of NFkB. Walnut oil suppressed the adhesion, migration and colony formation of the cells. CONCLUSIONS: High-dose short-term administration of walnut oil reduces the cell viability and metastatic ability of esophageal cancer cells, while exhibiting anticarcinogenic effect by inducing necrosis and cell cycle arrest at the G0/G1 phase, probably through suppression of the NFkB pathway. These data indicate that walnut oil, and by extension walnut consumption, may have beneficial effects in esophageal cancer in humans. This should be tested by clinical trials in the future.


Assuntos
Adenocarcinoma , Antineoplásicos/farmacologia , Fenômenos Fisiológicos Celulares/efeitos dos fármacos , Neoplasias Esofágicas , Juglans/química , Óleos de Plantas/farmacologia , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA