Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 35(1): 24, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526738

RESUMO

Multi-walled Carbon Nanotubes (MWCNTs) are inert structures with high aspect ratios that are widely used as vehicles for targeted drug delivery in cancer and many other diseases. They are largely non-toxic in nature however, when cells are exposed to these nanotubes for prolonged durations or at high concentrations, they show certain adverse effects. These include cytotoxicity, inflammation, generation of oxidative stress, and genotoxicity among others. To combat such adverse effects, various moieties can be attached to the surface of these nanotubes. Curcumin is a known anti-inflammatory, antioxidant and cytoprotective compound derived from a medicinal plant called Curcuma longa. In this study, we have synthesized and characterized Curcumin coated-lysine functionalized MWCNTs and further evaluated the cytoprotective, anti-inflammatory, antioxidant and antiapoptotic effect of Curcumin coating on the surface of MWCNTs. The results show a significant decrease in the level of inflammatory molecules like IL-6, IL-8, IL-1ß, TNFα and NFκB in cells exposed to Curcumin-coated MWCNTs as compared to the uncoated ones at both transcript and protein levels. Further, compared to the uncoated samples, there is a reduction in ROS production and upregulation of antioxidant enzyme-Catalase in the cells treated with Curcumin-coated MWCNTs. Curcumin coating also helped in recovery of mitochondrial membrane potential in the cells exposed to MWCNTs. Lastly, cells exposed to Curcumin-coated MWCNTs showed reduced cell death as compared to the ones exposed to uncoated MWCNTs. Our findings suggest that coating of Curcumin on the surface of MWCNTs reduces its ability to cause inflammation, oxidative stress, and cell death.


Assuntos
Curcumina , Nanotubos de Carbono , Humanos , Curcumina/farmacologia , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/química , Antioxidantes/farmacologia , Inflamação , Anti-Inflamatórios/farmacologia
2.
Antiviral Res ; 174: 104695, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31846633

RESUMO

Yin Yang 1 (YY1) is a ubiquitous transcription factor with both transcriptional activating and repressing functions. Targeting YY1 is considered as a potential therapeutic strategy for several malignancies. Telomerase Reverse Transcriptase (TERT) is also considered as a potential target for cancer therapeutics. To enable the large-scale screening and identification of potential YY1 targeting drugs, a gastric cancer cell line-based drug screening assay was developed. In a YY1 targeted drug repurpose screen, abacavir sulfate, a nucleoside analog reverse transcriptase inhibitor, known to target TERT was identified to show the feature of activating YY1 mediated transcription. We further explored i) the molecular targets of abacavir, ii) activation pattern of pathways regulated by abacavir in gastric tumors, and iii) therapeutic potential of abacavir for gastric cancer cells. Oncogenic signaling pathways like MYC, HIF1-α, ERK, WNT, E2F, NFκB and NRF1/2 were also found to be highly activated by abacavir. Abacavir was found to have less impact on the viability of gastric cancer cells. Across gastric tumors, we observed the co-activation of TERT, alternative lengthening of telomere (ALT), DNA repair, and the oncogenic pathways MYC, E2F/DP1, ERK, YY1, HIF1α, and NFκB specific gene-sets, in a subset of gastric tumors. The observed connectivity among TERT, DNA repair, and multiple oncogenic pathways indicate the need for the development of combinatorial therapeutics for the gastric tumors with the activated TERT.


Assuntos
Antineoplásicos/farmacologia , Didesoxinucleosídeos/farmacologia , Transdução de Sinais , Neoplasias Gástricas/tratamento farmacológico , Fator de Transcrição YY1/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Reposicionamento de Medicamentos , Humanos , Inibidores da Transcriptase Reversa/farmacologia , Telomerase/antagonistas & inibidores
3.
Biochem Biophys Res Commun ; 460(4): 1002-7, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25847597

RESUMO

Lymphoma is the most common hematopoietic tumor in dogs and humans, with similar pathogenesis and therapeutic responses. Anticancer drugs like vincristine (VCR) and doxorubicin (DOX) are often used in treating lymphoma. However, the cure rate is generally poor due to chemoresistance. Here, we sought to determine whether stearidonic acid (SDA), a plant-based dietary fatty acid, sensitizes chemoresistant canine lymphoid-tumor cells. GL-1 B-cell lymphoid-tumor cells were found to be highly sensitive to the antitumor-activity of VCR and DOX, while OSW T-cell and 17-71 B-cell lymphoid-tumor cells were moderately and fully resistant, respectively. SDA, at its non-toxic concentrations, significantly promoted the antitumor action of VCR and DOX in both OSW and 17-71 cells. SDA-mediated chemosensitization was associated with SDA inhibition of P-glycoprotein (P-gp) function. This was confirmed in HEK293 cells stably expressing P-gp as well as by increased binding-affinity of SDA to P-gp in P-gp docking analysis. SDA at its chemosensitizing concentrations did not affect the viability of healthy dog peripheral blood mononuclear cells, suggesting that SDA is non-toxic to normal dog peripheral blood leucocytes at its chemosensitizing concentrations. Our study identifies a novel dietary fatty acid that may be used as a dietary supplement in combination with chemotherapy to promote the antitumor efficacy of the chemotherapy drugs in dogs and possibly in humans with chemoresistant lymphoma.


Assuntos
Antineoplásicos/uso terapêutico , Ácidos Graxos Ômega-3/farmacologia , Linfoma de Células B/tratamento farmacológico , Plantas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Cães , Sinergismo Farmacológico , Ácidos Graxos Ômega-3/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA